首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   89篇
  免费   0篇
  国内免费   25篇
化学   91篇
物理学   23篇
  2022年   3篇
  2021年   2篇
  2020年   2篇
  2018年   3篇
  2017年   2篇
  2016年   5篇
  2014年   4篇
  2013年   7篇
  2012年   4篇
  2011年   5篇
  2010年   6篇
  2009年   16篇
  2008年   13篇
  2007年   8篇
  2006年   3篇
  2005年   6篇
  2004年   7篇
  2003年   1篇
  2002年   1篇
  2001年   3篇
  2000年   6篇
  1999年   3篇
  1998年   2篇
  1996年   2篇
排序方式: 共有114条查询结果,搜索用时 15 毫秒
71.
紫外光下纳米TiO2薄膜亲水性机理的电化学研究   总被引:6,自引:0,他引:6  
利用溶胶 凝胶方法在透明导电玻璃ITO (SnO2 ∶In)表面制备纳米TiO2 薄膜 ,XRD谱图表明TiO2 是锐钛矿晶型 ,AFM (Atomic Force Microscope)测得薄膜表面粒子约为 10 0nm .研究了ITO表面纳米TiO2 薄膜的光致亲水性变化 .通过循环伏安技术测定TiO2 薄膜电极在 2 5 3.7nm的紫外光照射后的电化学行为推测光致亲水性机理 .发现在紫外光照射一定时间后 ,TiO2 薄膜电极的循环伏安图在 +0 .0 35V处出现新的氧化峰 ;且随光照时间的增加 ,氧化峰的峰电流增大 ,溶液中的溶解氧对峰电流的大小有明显影响 .实验表明 ,在紫外光照下电极表面有Ti3 + 产生 ,证实了TiO2 薄膜的光致亲水性转变过程与Ti3 + 的生成导致的表面结构变化有关  相似文献   
72.
聚乙二醇-b-聚乳酸的合成及其电纺形成超细纤维研究   总被引:2,自引:2,他引:0  
为了提高聚乳酸的亲水性,以辛酸亚锡为催化剂、聚乙二醇单甲醚(mPEG)为大分子引发剂进行丙交酯(LLA)开环聚合,合成聚乙二醇-b-聚乳酸两嵌段共聚物(PELA).以红外光谱1、H核磁共振谱、接触角测试、差热扫描量热分析等方法对PELA的结构及性能进行表征.结果表明,通过调控mPEG与LLA的投料比可以控制PELA的相对分子质量,而随着mPEG组分含量或链长增加,共聚物亲水性增强,但其Tg、Tcc、Tm有所降低.由普通电纺制备PELA超细纤维,并分别由乳液电纺和同轴电纺得到以水溶性聚氧化乙烯(PEO)为芯、PELA为壳的芯/壳结构复合超细纤维(E-PEO/PELA和C-PEO/PELA).扫描电镜和透射电镜结果表明,PELA、E-PEO/PELA和C-PEO/PELA超细纤维形貌良好.随着PELA中mPEG含量的增加,电纺PELA纤维膜的吸水率增强,而由乳液电纺和同轴电纺制备的PEO/PELA芯/壳结构超细纤维膜,亲水性均好于PELA超细纤维膜.  相似文献   
73.
A novel hybrid plasma bonding (HPB) that combines sequential plasma activation (reactive ion etching followed by microwave radicals) with anodic bonding has been developed to achieve void-free and strong silicon/glass bonding at low temperature. The interfacial voids were observed at the silicon/glass interface both in the anodic bonding and in the plasma activated anodic bonding, but the voids were completely disappeared in the HPB method at 200 °C. The bonding strength of the silicon/glass in the HPB was as high as 30 MPa at 200 °C, which was higher than that in the individual treatment of anodic and plasma activated bonding methods. The improved characteristic behavior of the interface in the HPB is attributed to the higher hydrophilicity and smooth surfaces of silicon and glass after sequential plasma activation. These highly reactive and clean surfaces enhance the mobility of alkaline cations from the glass surface across the interface toward the bulk of glass in the HPB. This transportation resulted in a ∼353 nm thick alkaline depletion layer in the glass and enlarged the amorphous SiO2 across the interface. The void-free strong bonding is attributed to the clean hydrophilic surfaces and the amorphous SiO2 layer across the interface.  相似文献   
74.
紫外光辐射法表面接枝改性PET膜   总被引:1,自引:0,他引:1  
用二苯甲酮(BP)做光引发剂,聚对苯二甲酸乙二醇酯(PET)薄膜用丙烯酸进行紫外光照表面接枝改性。丙烯酸接枝率随光照时间、单体浓度增加而增加,并随引发剂浓度的变化而变化.光照时间为1h,引发剂的浓度为5×10-3mol/L,丙烯酸浓度为6%(wt%)时,接枝效果最好.通过接枝反应,羧基(—COOH)被引入到PET膜表面,提高了PET膜的亲水性和碱性染料的可染性。  相似文献   
75.
The degradation of poly(lactide-co-p-dioxanone)-based shape memory poly(urethane-urea) (SMPU) in vitro was investigated by observing the changes of the pH value of incubation media, weight loss rate, molecular weight and scanning electron microscopy (SEM) during degradation duration of 12 weeks. Moreover, 1H NMR was used to precisely study the degradation position by calculating the change of characteristic peaks value. The results revealed that the introduction of p-dioxanone (PDO) and -NH-(CO)- and -HN-(CO)-NH- would increase the hydrophilicity of polymer, so the degradation of SMPUs is higher than PDLLA control in the initial time, however, the degradation rate decreased in the anaphase of degradation, which can be attributed to the alkalic -NH2 from the NH2 and -NH-(CO), -NH-(CO)-NH-.  相似文献   
76.
Degradable polyesters exhibit wide application in many fields due to the fact that the waste of these polymers can be easily reclaimed, which greatly reduces the environmental risk. In this work, a small quantity of water-soluble poly(ethylene oxide) (PEO) was introduced into biodegradable poly(butylene succinate) (PBS). Crystallization behavior of the PBS matrix was comparatively investigated using polarized optical microscope (POM), differential scanning calorimetry (DSC) and wide angle X-ray diffraction (WAXD). The results demonstrate that PEO affects the crystallization behavior of the PBS matrix, which is greatly dependent upon the PEO content. At relatively low PEO content, accelerated crystallization is achieved for the PBS matrix, while the role of PEO becomes inconspicuous at relatively high PEO content. The sample surface hydrophilicity was evaluated through contact angle measurement of distilled water. The results demonstrate that incorporating PEO into PBS greatly enhances the hydrophilicity of the sample surface. The hydrolytic degradation measurements were carried out under an alkaline condition. The results clearly show that the presence of PEO accelerates the hydrolytic degradation of the PBS matrix. Furthermore, the sample obeys the surface erosion mechanism. The mechanism for the largely enhanced hydrolytic degradation ability is then analyzed.  相似文献   
77.
Hydrophilic poly(vinylidene fluoride) (PVDF) nanocomposite ultrafiltration (UF) membranes with excellent antifouling and antibiofouling characteristics are fabricated by employing polyhexanide coated copper oxide nanoparticles (P–CuO NPs). The presence of P–CuO NPs is played a significant role in altering the PVDF membrane matrix and probed by XRD, FTIR, FESEM and contact angle analysis. The PVDF/P–CuO nanocomposite membranes exhibited an outstanding antifouling performance indicated by the superior pure water flux, effective foulant separation and maximum flux recovery ratio during UF experiments as a result of the formation of the hydrophilic and more porous membrane due to the uniform distribution of P–CuO NPs. Particularly, the PVDF/P–CuO-3 membrane showed higher PWF of 152.5 ± 2.4 lm−2h−1 and porosity of 64.5% whereas the lower contact angle of 52.5°. Further, it showed the higher rejection of 99.5 and 98.4% and the flux recovery ratio of 99.5 and 98.5% respectively for BSA and HA foulants, demonstrated its increased water permeation, foulant separation and antifouling behavior. Further, the decent antibacterial activity is showed by the PVDF/P–CuO nanocomposite membranes with the formation of halo-zone around the membrane when exposed to the bacterial medium demonstrated that, by this process an antibacterial water treatment membrane can be developed by simple phase inversion technique with good membrane stability.  相似文献   
78.
杜淼  宋义虎 《高分子科学》2014,32(10):1381-1389
Loach skin mucin was isolated from loach skin mucus and found to be similar to mammalian mucins in many aspects, i.e., low amino acid residue content, high molecular weight, presence of hydrophobic blocks and gel-forming characteristics in water. However, loach skin mucin can form a weak gel in water at a much lower concentration (3 mg/mL) than mammalian mucins, indicating its good hydrophilicity. Loach skin mucin can also form a stable adsorption layer on gold surface in aqueous environment, owing to the existence of hydrophobic blocks within mucin. The nature of high hydrophilicity and interfacial behavior give loach skin mucin potential as excellent material for use in solid-water interfaces for antifouling and lubrication, and should be crucial to the versatile functions of loach skin mucus.  相似文献   
79.
朱宝库 《高分子科学》2014,32(2):143-150
Porous PVDF blend membranes with good hydrophilicity and a symmetric structure were prepared by the phase inversion method using amphiphilic brush-like copolymers, P(MMA-r-PEGMA), as hydrophilic additive and triethylphosphate (TEP) as solvent. P(MMA-r-PEGMA) was synthesized by radical polymerization in TEP. Then the obtained amphiphilic copolymer solution was mixed with PVDF and TEP to prepare the dope solution. The effects of P(MMA-r-PEGMA) content and coagulation composition on membrane morphologies were investigated using scanning electron microscopy (SEM). The results demonstrated that, even blended with amphiphilic copolymers, a symmetric structure can be formed. Hollow fiber membranes with a mainly symmetric structure were also fabricated. The dry hollow fiber membranes showed good hydrophilicity, high flux and good rejection performance because of their hydrophilic surface and pores wall.  相似文献   
80.
For polyamide used in reverse osmosis (RO) membranes, the content of pendant acid groups is critical to its performance. In this work, FTIR was used to analyze the acid contents in the polyamide films prepared via interfacial polymerization of trimesic acid trichloride (TMC) in hexane and 1,3-phenylenediamine (MPDA) in water, and the effects of reaction conditions, including monomer concentrations, time, and temperature, were studied. It was found that more pendant acid groups are present in the polyamide film at higher TMC concentrations or lower MPDA concentrations, and longer reaction times and lower temperatures also favor the formation of the free acids. These results can be explained by the monomer diffusion in the interfacial polymerization process. This work may help the design and fabrication of RO membranes with different hydrophilicity and target performance.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号