首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5667篇
  免费   1058篇
  国内免费   1089篇
化学   5005篇
晶体学   187篇
力学   75篇
综合类   62篇
数学   321篇
物理学   2164篇
  2024年   21篇
  2023年   76篇
  2022年   182篇
  2021年   168篇
  2020年   268篇
  2019年   217篇
  2018年   180篇
  2017年   186篇
  2016年   284篇
  2015年   264篇
  2014年   294篇
  2013年   498篇
  2012年   380篇
  2011年   368篇
  2010年   370篇
  2009年   367篇
  2008年   369篇
  2007年   362篇
  2006年   377篇
  2005年   297篇
  2004年   330篇
  2003年   271篇
  2002年   190篇
  2001年   176篇
  2000年   180篇
  1999年   151篇
  1998年   132篇
  1997年   124篇
  1996年   104篇
  1995年   108篇
  1994年   96篇
  1993年   76篇
  1992年   70篇
  1991年   70篇
  1990年   45篇
  1989年   34篇
  1988年   25篇
  1987年   15篇
  1986年   13篇
  1985年   16篇
  1984年   11篇
  1983年   7篇
  1982年   13篇
  1981年   7篇
  1980年   2篇
  1979年   8篇
  1978年   4篇
  1973年   3篇
  1971年   1篇
  1968年   1篇
排序方式: 共有7814条查询结果,搜索用时 15 毫秒
181.
We present the implementation of the cyclic cluster model (CCM) formalism at the Hartree–Fock (HF) level. In contrast to other periodic models, the CCM is a Γ‐point approach. Integration is carried out in real space within a finite interaction area determined by the size and the shape of the cluster that corresponds to a supercell of the solid, surface, or polymer. Particular care has to be taken for the proper treatment of three‐ and four‐center integrals that involve basis functions located at the boundaries of the Wigner–Seitz supercell, which defines the interaction region. The similarity between the CCM formalism and molecular approaches allows in principle the application of sophisticated post HF methods to solid‐state problems with only moderate modification of the molecular code. We show for selected model systems, that with our approach, the electronic structure and energetics obtained by the conventional supercell model is fully reproduced. © 2014 Wiley Periodicals, Inc.  相似文献   
182.
Graphene-like layered hexagonal boron nitride (g-BN) was prepared and characterized. The performance of using g-BN as an adsorbent for removal of fluoroquinolone antibiotic gatifloxacin (GTF) from aqueous solution was evaluated. g-BN showed an excellent adsorption capability with notable GTF adsorption ratio of more than 90%. Data of equilibrium adsorption of GTF onto g-BN at different temperatures were represented by Langmuir, Freundlich and Tempkin isotherm models, and Langmuir exhibited the best fitting with the maximum adsorption capacity of 88.5 mg·g?1 at 288 K. GTF adsorption was insignificantly affected by solution pH. Competitive role of Na+ and Ca2+ in the solution inhibited the adsorption of GTF and decreased the adsorption capacity a bit. The adsorption process was spontaneous and exothermic. The adsorption was probably governed by π–π interaction between GTF and g-BN, and electrostatic interaction may also exist in the adsorption process.  相似文献   
183.
To systematically evaluate the quality of SiNx films in multi-stacked structures, we investigated the effects of post-deposition annealing (PDA) on the film properties of SiNx within the SiO2/SiNx/SiO2/Si stacked structure by performing X-ray photoelectron spectroscopy (XPS), X-ray reflectivity (XRR), Fourier transform infrared (FT-IR) spectroscopy, and scanning transmission electron microscope–electron energy loss spectroscopy (STEM-EELS) analyses. The XPS results showed that PDA induces the oxidation of the SiNx layer. In particular, new finding is that Si-rich SiNx in the SiNx layer is preferentially oxidized by PDA even in multi-stacked structure. The XRR results showed that the SiNx layer becomes thinner, whereas the interface layer between the SiNx layer and Si becomes thicker. It is concluded by STEM-EELS and XPS that this interface layer is SiON layer. The density of N–H and Si–H bonding within the stacked structure strongly depends on the PDA temperature. Our study helps elucidate the properties of SiNx films in stacked structures from various perspectives.  相似文献   
184.
Time-of-flight secondary ion mass spectrometry (TOF-SIMS), when used for the analysis of complex material samples, typically provides data that are complicated and challenging to understand. Therefore, additional data analysis techniques, such as multivariate analysis, are often required to facilitate the interpretation of TOF-SIMS data. In this study, a new method based on the information entropy (Shannon entropy) is proposed as an indicator of the outline characteristics of an unknown sample, such as changes in the material within the sample and mixing conditions. The Shannon entropy values are calculated using the relative intensity of every secondary ion normalized to the total ion count and reflect the diversity of secondary ions in the spectrum. Mixed samples containing two organic electroluminescence materials of different ratios, multilayers of Irganox 1010, and other organic materials were employed to evaluate the utility of Shannon entropy in the analysis of TOF-SIMS data. The findings demonstrate that the Shannon entropy of a spectrum indicates differences in materials and changes in the conditions of a material in a sample without the need for peak identification or the knowledge of specific peaks corresponding to the materials in the sample.  相似文献   
185.
Thiacalixarene-supported Co32nanoclusters encapsulated in polyacrylonitrile nanofibers(Co32@PAN-NFs) by electrospinning have been utilized as precursors to fabricate N-doped CoO@Co9S8 carbon nanofibers(CoO@Co9S8@CNFs) for superior Li-ion storage. The S-rich Co32 clusters capped by organic sheets afforded the well dispersed cobalt oxide/sulfide nanoparticles embedded in carbon nanofiber composites by direct calcination. The N-doped CoO@Co9S8@CNFs nanocomposites have been utilized as anode materials for lithium ion battery with the reversible capabilities being of 1051.8, 967.6, 894.7, 782.7, 669.5 and 525.4 mA·h/g at 0.1, 0.2, 0.5, 1, 2 and 3 A/g, respectively. The CoO@Co9S8@CNFs also showed a relatively high stable capacity of 551.7 mA·h/g at the current density of 1 A/g after 200 cycles of rate experiments. The as-obtained N-doped CoO@Co9S8@CNFs nanocomposites exhibited superior reversible capacity, rate performance, Coulomb efficiency(74.5% vs. 63.9%) and cyclic stability comparing with the CoO@Co9S8@C derived from simple annealing of Co32 templates.  相似文献   
186.
Electrochemical reduction of carbon dioxide into value-added products is a promising way to recycle the greenhouse gas, thus solving the crisis of global warming. Pressing challenges remain in regulating the catalytic selectivity. In this work, we demonstrated a metal-organic frameworks-assisted approach to synthesizing In species loaded on the surface of N doped carbon matrix. By controlling the particle sizes, the catalytic selectivity can be easily altered. The obtained Inc/NC possesses the outstanding capability for converting CO2 into CO. And 80.09% Faraday efficiency (FE) of CO can be achieved at 0.8 V vs. RHE. While the In2O3/C exhibits different catalytic behaviors, the main product is formic acid and the FE is more than 50% at 0.8 V vs. RHE. The selectivity reversal can be attributed to the strong interactions between In clusters and N atoms of carbon supports, which efficiently inhibits the formation of the by-product, formic acid. Our research has paved a new way to modulate catalytic selectivity by manipulating the fine structures of the catalysts.  相似文献   
187.
The earth‐metal olefin complex [Ga I (COD)2]+[Al(ORF)4]? (COD=1,5‐cyclooctadiene; RF=C(CF3)3) constitutes the first homoleptic olefin complex of any main‐group metal accessible as a bulk compound. It is straight forward to prepare in good yield and constitutes an olefin complex of a main‐group metal that—similar to many transition‐metals—may adopt the +1 and +3 oxidation states opening potential applications. Crystallographic‐, vibrational‐ and computational investigations give an insight to the atypical bonding between an olefin and a main‐group metal. They are compared to classical transition‐metal relatives.  相似文献   
188.
This study introduces modified carbon paste electrodes with carbon nitride nanosheets (CNNS) and outlines their application for the determination of hydroxychloroquine sulfate (HCQ) in tablets and synthetic urine samples. CNNS were synthesized by hydrothermal route (200 °C, 10 h) using melamine and citric acid as their precursors. The carbon nitride nanosheets-based electrode (CNNS/E) presented a linear dynamic range for HCQ (LDR), ranging from 10.0 nmol l−1 to 6.92 μmol l−1, and detection (LOD) and quantification limits (LOQ) of 0.16 nmol l−1 and 0.52 nmol l−1, respectively. LOD and LOQ were calculated by the equations: LOD=3(Sd/b), and LOQ=10(Sd/b). The modified sensor presented excellent relative standard deviations for parameters such as repeatability (2.39 % and 1.87 %) and reproducibility (3.22 % and 2.32 %) in HCQ oxidation peaks (1 and 2). The CNNS/E has not shown significant variations in its anodic signal intensity in the presence of some organic and inorganic substances. It is worth bearing in mind that CNNS/E can be easily manufactured and the sensor has the lowest HCQ detection limits reported so far. The proposed sensor was successfully applied for HCQ determination in tablets and synthetic urine, showing good recovery values and an error of 0.60 % about comparative method in tablet samples, assuring the quality of the method.  相似文献   
189.
Ti-doped hydrogenated diamond-like carbon (DLC) films were deposited on Si(1 0 0) substrates by a filtered cathodic vacuum arc (FCVA) method using Ar and CH4 as the feedstock. The composition and microstructure of the films were investigated by Raman spectroscopy, X-ray photoelectron spectroscopy and IR spectroscopy. The internal stress was determined by the radius of curvature technique. The influence of the bias voltage on the microstructure of the as-deposited films was investigated. It was found that the graphite-like bonds was dominated in the Ti-doped DLC film deposited at 0 V bias voltage. When bias voltage was increased to −150 V, more diamond-like bond were produced and the sp3 content in film reached the maximum value, after which it decreased and more graphite-like bonds feature produced with further increase of the negative bias voltage. The compressive internal in the Ti-doped DLC films also exhibited a maximum value at −150 V bias voltage. IR results indicated that CH bonded intensity reduced, and H atoms bonded with C atoms were substituted for the Ti atoms as the negative bias voltage increasing. All the composition and microstructure change can be explained by considering the plasma conditions and the effect of negative bias voltage applied to the substrate.  相似文献   
190.
"使用Brenner-LJ拟合势描述了金刚石与C36团簇原子间的相互作用,并用分子动力学模拟的方法研究单个C36(D6h)在金刚石(100)晶面的沉积机制.通过仿真实验分析了C36团簇的入射能量、入射点位置、入射姿势、入射角度等因素对其成核初期化学吸附过程以及沉积后其稳定性的影响.研究发现:由于C36入射点位置及入射姿势的不同,其在金刚石(100)晶面沉积时的沉积阈值最小值为20 eV,最大值为60 eV;在入射角不超过60o斜射时,由于水平运动分量的存在,C36可能翻滚及平滑至成键能量较小的区域后再成键  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号