首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   291篇
  免费   8篇
  国内免费   7篇
化学   209篇
晶体学   3篇
力学   43篇
数学   21篇
物理学   30篇
  2024年   1篇
  2023年   1篇
  2022年   3篇
  2021年   6篇
  2020年   8篇
  2019年   1篇
  2018年   3篇
  2017年   2篇
  2016年   8篇
  2015年   7篇
  2014年   9篇
  2013年   16篇
  2012年   6篇
  2011年   15篇
  2010年   7篇
  2009年   7篇
  2008年   13篇
  2007年   11篇
  2006年   15篇
  2005年   19篇
  2004年   18篇
  2003年   19篇
  2002年   23篇
  2001年   12篇
  2000年   19篇
  1999年   16篇
  1998年   12篇
  1997年   3篇
  1996年   2篇
  1995年   4篇
  1994年   4篇
  1993年   5篇
  1992年   1篇
  1991年   2篇
  1990年   2篇
  1988年   1篇
  1981年   1篇
  1980年   1篇
  1976年   1篇
  1975年   1篇
  1970年   1篇
排序方式: 共有306条查询结果,搜索用时 15 毫秒
211.
The nitridorhenium(V) complexes [ReNCl2(PR2Ph)3] (R = Me, Et) react with the N‐heterocyclic carbenes (NHC) 1,3‐diethyl‐4,5‐dimethylimidazole‐5‐ylidene (LEt) or 1,3,4,5‐tetramethylimidazole‐2‐ylidene (LMe) in absolutely dry THF under complete replacement of the equatorial coordination sphere. The resulting [ReNCl(LR)4]+ complexes (LR = LMe, LEt) are moderately stable as solids and in solution, but decompose in hot methanol under formation of [ReO2(LR)4]+ complexes. With 1,3‐diisopropyl‐4,5‐dimethylimidazole‐5‐ylidene (Li‐Pr), the loss of the nitrido ligand and the formation of a dioxo species is more rapid and no nitridorhenium intermediate could be isolated. The Re‐C bond lengths in [ReNCl(LEt)4]Cl of approximately 2.195Å are relatively long and indicate mainly σ‐bonding in the electron‐deficient d2 system under study. The hydrolysis of the nitrido complexes proceeds via the formation of [ReO3N]2? anions as could be verified by the isolation and structural characterization of the intermediates [{ReN(PMe2Ph)3}{ReO3N}]2 and [{ReN(OH2)(LEt)2}2O][ReO3N].  相似文献   
212.
Three new coordination compounds [{Zn(H2O)2} {Zn(H2O)4} Re4Te4(CN)12] (1), [Zn(en)2(NH3)2][{Zn(en)(NH3)2} Re4Te4(CN)12]·H2O (2), and [{Zn2(dien)3} Re4Te4(CN)12]· ·6H2O (3) (dien is diethylenetriamine) were prepared by reactions of aqueous solutions of the tetrahedral cluster rhenium tellurocyanide complex K4[Re4Te4(CN)12]· 5H2O with zinc dichloride in the presence of ammonia, ethylenediamine, and diethylenetriamine, respectively. Complex 1 has a three-dimensional structure with two types of the Zn atoms; complex 2 is ionic with the polymeric chain anion; complex 3 has a molecular structure. The structures of complexes 1–3 were determined by single-crystal X-ray diffraction analysis. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 4, pp. 718–721, April, 2006.  相似文献   
213.
214.
The terahertz time-domain and Raman spectra of sulfur-containing cystein-based peptides in the region of the low-frequency infrared vibrations have been measured at room temperature. The low-frequency bands that can be assigned to the S–S bridges are observed. The vibrational modes found in molecular crystalline materials should be described as phonon modes with strong coupling to the intra molecular vibrations.  相似文献   
215.
As a result of the electrochemical oxidation process, the [FeIII(5Cl-thsa)2] spin-crossover (SCO) anion with N2S2O2 coordination sphere transforms into N4O2-coordinated FeIII SCO neutral binuclear complex 2 with twist of two disulfide bridges. Each dimeric complex is a binuclear double-stranded helicate with similar chirality of both Fe centers. The crystal structure of the complex 2 ⋅ 3H2O at 100 K has a monoclinic C2/c space group and contains large cavities (about 21.5 % of the unit cell volume) half-filled by 3 water molecules per one dimer. The N4O2 coordination of iron(III) with two oxygen atoms (−O) of phenoxy groups, two imine-type (−Nim=) nitrogen atoms of azomethine groups, one amidrazone-type (=NamidH) nitrogen atom and one ionized terminal group (−NionizH) of nitrogen has not been observed in CCDC so far. The oxidation state of the iron atoms in the dimeric complex was confirmed by 57Fe Mössbauer spectroscopy on 90 % enriched 57Fe sample. Mössbauer spectra and dc magnetic measurements demonstrated the partial HS-HS→LS-LS SCO in the 185–225 K temperature range. The details of the structure of complex 2 and the features of its magnetic properties were refined by theoretical analysis based on DFT calculations. The B3LYP* functional correctly predicting the energy of the spin-crossover process was revealed.  相似文献   
216.
基于Priestley(1967)演变功率谱模型,并采用Lin和Yang(1983)的建议,建立了脉动风速的非平稳功率谱模型。依据此模型,采用三维有限元法,建立了大跨桥梁非平稳耦合抖振运动方程。然后,将虚拟激励法和精细时程积分法相结合,建立了求解桥梁三维非平稳耦合抖振运动方程的快速算法。以某大跨悬索桥为例,分析了该桥的非平稳耦合抖振响应,并与平稳耦合抖振响应进行了比较。计算结果表明:随着脉动风速平稳部分持时的增大,非平稳抖振分析结果逐渐收敛于平稳抖振分析结果;但若脉动风速的平稳部分持时较短,非平稳抖振分析结果将低于平稳抖振分析结果。  相似文献   
217.
The compound [Co4(C6H14N2)44‐S2)22‐S2)4] ( I ) and the pseudo‐polymorph [Co4(C6H14N2)44‐S2)22‐S2)4] ? 4 H2O ( II ) were obtained under solvothermal conditions (C6H14N2=trans‐1,2‐diaminocyclohexane). The structures feature S22? ions exhibiting two different coordination modes. Terminal S22? entities join two Co3+ centres in a μ2 fashion, whereas the central S22? groups connect four Co3+ cations in a μ4‐ coordination mode. Compound II can be transformed into compound I by heat and storage over P2O5 and storing compound I in humid air yields in the formation of compound II . The intermolecular interactions investigated through Hirshfeld surface analysis reveal that besides S???H bonding close contacts are associated with relatively weak H???H interactions. A detailed DFT analysis of the bonding situation explains the long S?S bonds in the μ4‐bridging S22? units and the short bonds for the S22? moieties in the μ2‐connecting mode. Photocatalytic hydrogen evolution experiments demonstrate the potential of compound II as catalyst.  相似文献   
218.
We have systematically studied how secondary interactions with neighboring lysine (Lys) and arginine (Arg) residues influence the binding and selectivity of the synthetic receptor A2N for trimethyllysine (Kme3). Multiple secondary binding sites on A2N are formed by carboxylates rigidly positioned over aromatic rings, a motif that has been shown to stabilize salt bridges. We varied the spacing between KmeX (X=0, 3) and an ancillary Lys or Arg and measured binding by isothermal titration calorimetry (ITC). These studies revealed that both neighboring residues improve the binding of A2N to KmeX by approximately 1 kcal mol?1, with little influence of the spacing. Nonetheless, the improvement in affinity caused by Arg is enthalpically driven, while for Lys it is entropically driven, suggesting different mechanisms by which the residues interact with the secondary binding site.  相似文献   
219.
Protein design is a useful method to create novel artificial proteins. A rational approach to design a heterodimeric protein using domain swapping for horse myoglobin (Mb) was developed. As confirmed by X‐ray crystallographic analysis, a heterodimeric Mb with two different active sites was produced efficiently from two surface mutants of Mb, in which the charges of two amino acids involved in the dimer salt bridges were reversed in each mutant individually, with the active site of one mutant modified. This study shows that the method of constructing heterodimeric Mb with domain swapping is useful for designing artificial multiheme proteins.  相似文献   
220.
Quantum chemical calculations using gradient-corrected density functional theory (B3LYP) and ab initio methods at the MP2 level are reported for the geometries and bond energies of the nitrido complexes Cl2 (PH3)3ReN–X (X = BH3, BCl3, BBr3, AlH3, AlCl3, AlBr3, GaH3, GaCl3, GaBr3, O, S, Se, Te). The theoretical geometries are in excellent agreement with experimental values of related complexes which have larger phosphine ligands. The parent nitrido complex Cl2(PH3)3ReN is a very strong Lewis base. The calculated bond dissociation energy of Cl2(PH3)3ReN–AlCl3 is D e = 43.7 kcal/mol, which is nearly as high as the bond energy of Me3N–AlCl3. The donor-acceptor bonds of the other Cl2(PH3)3ReN–AY3 complexes are also very strong. Even stronger N–X bonds are predicted for most of the nitrido-chalcogen complexes, which exhibit the trend X = O ≫ S > Se > Te. Analysis of the electronic structure shows that the parent compound Cl2(PH3)3ReN has a Re–N triple bond. The Re–N σ bond is clearly polarized towards nitrogen, while the two π bonds are nearly nonpolar. The Re–N σ and π bonds become more polarized toward nitrogen when a Lewis acid or a chalcogen atom is attached. Bonding in AY3 complexes should be described as Cl2(PH3)3ReE≡N→AY3, while the chalcogen complexes should be written with double bonds Cl2(PH3)3Re=N=X. The charge-decomposition analysis indicates that the nitrogen-chalcogen bonds of the heavier chalcogen complexes with X = S, Se, Te can also be interpreted as donor-acceptor bonds between the nitrido complex acting as a Lewis base and the chalcogen atom with an empty p(σ) orbital acting as a Lewis acid. The nitrido oxo complex Cl2(PH3)3 Re=N=O has a covalent N–O double bond. Received: 27 July 1998 / Accepted: 26 October 1998 / Published online: 16 March 1999  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号