首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   72篇
  免费   2篇
  国内免费   6篇
化学   56篇
晶体学   1篇
力学   1篇
物理学   22篇
  2020年   1篇
  2018年   2篇
  2017年   6篇
  2016年   1篇
  2014年   1篇
  2013年   2篇
  2012年   2篇
  2011年   4篇
  2010年   3篇
  2009年   1篇
  2008年   6篇
  2007年   4篇
  2006年   2篇
  2005年   6篇
  2004年   10篇
  2003年   4篇
  2002年   4篇
  2001年   3篇
  2000年   1篇
  1999年   2篇
  1998年   1篇
  1997年   1篇
  1994年   4篇
  1993年   2篇
  1991年   3篇
  1989年   2篇
  1986年   1篇
  1980年   1篇
排序方式: 共有80条查询结果,搜索用时 31 毫秒
51.
两种不同晶形的邻羟基苯甲酸钬配合物的合成与晶体结构   总被引:3,自引:1,他引:3  
合成了两种不同晶形的配合物,其组成分别为[Ho_2(o-HOC_6H_1CO_2)_6(H_2O)_4]·4H_2O及[Ho(o-HOC_6H4CO_2)_3·(H_2O)_2·2H_2O]_n,用X射线衍射法测定了它们的结构:一种以二聚体形式存在,属三斜晶系(Ⅰ),其中钬离子的配位数为9;另一种呈无限链状聚合结构,属单斜晶系(Ⅱ),钬离子的配位数为8.同时还研究了它们的热分解过程.  相似文献   
52.
The network compound , (Tz? = 1,2,4‐triazolate anion, C2H2N3?, TzH = 1,2,4‐1H‐triazole, C2H3N3), was obtained as pink single crystals by the reaction of the holmium metal with a melt of the amine 1,2,4‐1H‐triazole. No additional solvent was used. The compound is an unexpected example of a 2D‐linked network structure as other lanthanides give 3D‐frameworks and MOFs with 1,2,4‐1H‐triazole instead. This illustrates that the series of lanthanides yields very different results in attempts to create MOF structures. In the triazolate ligands Tz? function both as μ‐η12 linkers as well as η1 end on ligands. The latter coordination mode is also found for additional triazole molecules. C.N. is nine for holmium(III). The layers exhibit a system of intra and inter layer hydrogen bonding and to triazole molecules from the melt reaction intercalated in‐between the layers. The product was investigated by X‐ray single crystal analysis, Mid IR, Far IR and Raman spectroscopy, and with DTA/TG regarding its thermal behaviour.  相似文献   
53.
We have investigated the magnetic behavior of Ho5Sb3 compound (Mn5Si3-type, hexagonal; a=0.8865(1) nm, c=0.6232(1) nm, as derived from X-ray Guinier powder pattern) by using the techniques of magnetization, electrical resistivity, heat capacity and neutron diffraction. We find that Ho5Sb3 exhibits a ferrimagnetic type (Ferrimagnet I) ordering below 60 K with propagation vectors K0=[0, 0, 1] and K1=[±Kx, 0, 0]. Below 40 K, the thermal variation of magnetic reflections and the appearance of an additional magnetic component with propagation vector K2=[0, 1/2, 0] show the onset of an antiferromagnetic type of ordering in the magnetic structure; which evolves into yet another ferrimagnetic structure (Ferrimagnet II) as the temperature is lowered down to 2 K. The magnetic moments of the Ho atoms at the (4d) and (6g) sites with magnitudes of nearly 7.4 and 6.3 μB at 2 K, respectively, are inclined approximately at 70° to the c-axis.  相似文献   
54.
Ho2Te4O11 and Ho2Te5O13: Two Telluriumdioxide‐rich Oxotellurates(IV) of Trivalent Holmium Ho2Te4O11 (monoclinic, C2/c; a = 1240.73(8), b = 511.21(3), c = 1605.84(9) pm, β = 106.142(7)°; Z = 4) and Ho2Te5O13 (triclinic, P1; a = 695.67(5), b = 862.64(6), c = 1057.52(7) pm, α = 89.057(6), β = 86.825(6), γ = 75.056(6)°; Z = 2) are obtained by the reaction of holmium sesquioxide with tellurium dioxide in appropriate molar ratios (Ho2O3 : TeO2 = 1 : 4 and 1 : 5, respectively) in evacuated silica tubes within eight days at 800 °C. The application of cesium chloride (CsCl) as flux in about five times molar excess secures fast and complete reactions to the single‐crystalline products aimed at. In the crystal structure of Ho2Te4O11 [HoO8] polyhedra are connected via oxygen edges thereby building up a network {[Ho2O10]14–} (001). On the other hand, the crystal structure of Ho2Te5O13 exhibits oxygen‐linked [(Ho1)O8] and [(Ho2)O7] polyhedra, which form ribbons {[(Ho1)2(Ho2)2O20]28–} running along [100]. Common to both structures, however, is the stereochemical activity of the non‐bonding electron pairs (“lone pairs”) of all the of the Te4+ cations (Te1 and Te2 in Ho2Te4O11, Te1–Te5 in Ho2Te5O13) causing ψ1‐polyhedral figures of coordination with 3 + 1, 4 and 3 + 2 oxygen atoms, respectively, around the central atoms.  相似文献   
55.
究了在连续可调谐红色染料激光激发下,掺杂Ho3+离子的SrF2单晶中Ho3+Ho3+对的上转换发光特性。Ho3+Ho3+离子对的上转换发光主要分布于:强5F3→5I8跃迁480nm蓝色发射,较强5S2,5F4→5I8跃迁的540nm绿色发射。给出了SrF2晶体中Ho3+离子发射光谱中不同能级跃迁的谱峰及所对应的跃迁。通过对样品的激发,发射光谱和发光的上升、衰减等过程的分析,研究了发光中心的结构,分析了Ho3+上转换发光的机制,建立了Ho3+Ho3+离子对的能级图  相似文献   
56.
本文研究了2-乙基己基膦酸单2-乙基己酯萃取色层分离-原子发射光谱测定超高纯Ho2O3、Er2O3中良量稀土杂质,可用于99.9999%Ho2O3、Er2O3的纯度分析。  相似文献   
57.
Synthesis and Crystal Structure of the Holmium(III) Chloride Oxotellurate(IV) HoClTeO3 Orange coloured, rod—shaped single crystals of the holmium( III) chloride oxotellurate(IV) HoClTeO3 (orthorhombic, Pnma; a = 730.25(5), b = 696.54(5), c = 905.18(7) pm; Z = 4) are obtained during attempts to synthesize holmium(III) oxochlorotellurates(IV) by reaction of holmium oxychloride (HoOCl) and tellurium dioxide (TeO2; 1:1—2molar ratio, 800 °C, 40 d) in evacuated silica tubes. The crystal structure contains sevenfold coordinated Ho 3+ cations surrounded by five oxide and two chloride anions forming a pentagonal bipyramid. Interconnection of the [Ho(O1)(O2)4Cl2] polyhedra occurs via two edges made of four equatorial oxygen atoms (O2) under formation of {[Ho(O1)(O2)4/2Cl2/1]5‐} chains running parallel [010]. These arrange as hexagonal closest packing of rods and are linked to each other by Cl anions to a three—dimensional {[Ho(O1)1/1(O2)4/2Cl2/2]4‐} network. All Te4+ cations are embedded therein and exhibit ψ1—tetrahedral coordination figures as discrete anionic [Te(O1)(O2)2]2‐ pyramids due to the stereochemical activity of the non—binding electron pairs („lone pairs”︁). They stabilize the {[HoO3Cl]4‐} network via covalent bonds to one axial (O1) and two equatorial oxygen atoms (O2) of each [HoO5Cl2] polyhedron.  相似文献   
58.
Ho2O[SiO4] and Ho2S[SiO4]: Two Chalcogenide Derivatives of Holmium(III) ortho‐Oxosilicate Ho2O[SiO4] crystallizes monoclinically with the space group P21/c (a = 904.15(9), b = 688.93(7), c = 667.62(7) pm, β = 106.384(8)°, Z = 4) in the A‐type structure of rare‐earth(III) oxide oxosilicates. Yellow platelet‐shaped single crystals were obtained as by‐product during an experiment to synthesize Ho3Cl[SiO4]2 by reacting Ho2O3 and SiO2 in the ratio 4 : 6 with an excess of HoCl3 as flux at 1000 °C for seven days in evacuated silica ampoules. Both crystallographically different Ho3+ cations show coordination numbers of 8+1 and 7 with coordination figures of 2+1‐fold capped trigonal prisms and octahedra, in which one of the vertices changes to an edge by two instead of one coordinating atoms, respectively. The O2— anion not linked to silicon is surrounded tetrahedrally by four Ho3+ cations which built a layer parallel (100) by vertex‐ and edge‐sharing of the [OHo4]10+ units according to {[(O5)(Ho1)1/1(Ho2)3/3]4+}. Within rhombic meshes of these layers the isolated oxosilicate tetrahedra [SiO4]4— come to lie. Ho2S[SiO4] crystallizes orthorhombically in the space group Pbcm (a = 605.87(5), b = 690.41(6), c = 1064.95(9) pm, Z = 4). It also emerged as a single‐crystalline by‐product obtained during the synthesis of Ho2OS2 by reaction of a mixture of Ho2O3, Ho and S with the wall of the evacuated silica tube used as container with an excess of CsCl as flux at 800 °C. The structure of the yellow platelet‐shaped, air and water resistant crystals also distinguishes two Ho3+ cations with bicapped trigonal prisms and trigondodecahedra as coordination polyhedra for CN = 8. The S2— anions are almost square planar surrounded by four Ho3+ cations, but situated completely outside this plane. The [SHo4]10+ squares form strongly corrugated layers perpendicular to [100] by corner‐sharing according to {[(S)(Ho1)2/2(Ho2)2/2]4+}. Contrary to the oxide oxosilicates the isolated oxosilicate tetrahedra [SiO4]4— do not lie within the rhombic meshes of these layers, but above and below the (Ho2)3+ cations while viewing along [100].  相似文献   
59.
《Current Applied Physics》2020,20(12):1328-1334
Spin valves with holmium layers and three-layer structures metal/Ho/metal were prepared by magnetron sputtering. A holmium layer in the spin valves is polycrystalline with weak axial <002> texture. The structural coherence length along the hexagonal c-axis is approximately 2/5 of the total thickness of the holmium layer. Field dependences of the spin valves magnetoresistance were measured at different temperatures. Correlation was revealed between magnetic state in holmium layer and the shape of magnetoresistive curve. Deviation of magnetic moments of the reference layer and the adjacent part of holmium from the applied magnetic field was investigated. The field induced mobility of the magnetic helicoid in holmium layers was revealed.  相似文献   
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号