首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   262篇
  免费   23篇
  国内免费   5篇
化学   39篇
晶体学   13篇
力学   2篇
物理学   236篇
  2024年   1篇
  2022年   3篇
  2021年   1篇
  2020年   3篇
  2017年   1篇
  2016年   5篇
  2015年   1篇
  2014年   4篇
  2013年   3篇
  2012年   5篇
  2011年   9篇
  2010年   10篇
  2009年   43篇
  2008年   51篇
  2007年   30篇
  2006年   19篇
  2005年   9篇
  2004年   7篇
  2003年   16篇
  2002年   17篇
  2001年   11篇
  2000年   6篇
  1999年   5篇
  1998年   4篇
  1997年   5篇
  1996年   1篇
  1995年   7篇
  1994年   1篇
  1993年   3篇
  1992年   3篇
  1988年   2篇
  1985年   1篇
  1977年   2篇
  1973年   1篇
排序方式: 共有290条查询结果,搜索用时 15 毫秒
41.
CdTe epilayers have been grown by vapor phase epitaxy (VPE) on glass, MgO, sapphire, LiNbO3 and mica substrates. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) studies show the good structural quality of the epilayers. In these epilayers, a few optical modes were excited with a 1.33-μm laser. The measured propagation losses were in the range between 5 dB/cm and less than 0.5 dB/cm. From dark-mode m-lines, the epilayer thickness was found to be in the 1–3 μm range, in good accord with that obtained by SEM measurements. The refractive index obtained from the fitting is also in good accord with that of bulk CdTe. Received: 7 October 1999 / Accepted: 13 March 2000 / Published online: 5 July 2000  相似文献   
42.
Transparent conducting zinc oxide thin films were prepared by spray pyrolytic decomposition of zinc acetate onto glass substrates with different thickness. The crystallographic structure of the films was studied by X-ray diffraction (XRD). XRD measurement showed that the films were crystallized in the wurtzite phase type. The grain size, lattice constants and strain in films were calculated. The grain size increases with thickness. The studies on the optical properties show that the direct band gap value increases from 3.15 to 3.24 eV when the thickness varies from 600 to 2350 nm. The temperature dependence of the electrical conductivity during the heat treatment was studied. It was observed that heat treatment improve the electrical conductivity of the ZnO thin films. The conductivity was found to increase with film thickness.  相似文献   
43.
This study is designed to systematically investigate how various factors, such as treatment duration, output power, oxygen gas flux, jet to substrate distance, and moisture regain, influence atmospheric pressure plasma etching rate of polyamide 6 (PA 6) films. The etching rate increased as the output power, oxygen gas flux, and moisture regain increased. As the treatment time increased, the etching rate increased first and then decreased. When the substrate was too close or too far from the nozzle, the etching rate was almost not measurable. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) show an increased surface roughness after the plasma treatment. X-ray photoelectron spectroscopy (XPS) shows a decreased carbon content and an increased oxygen content after the plasma treatment. T-peel strength shows an improved bonding strength between the PA 6 films and an adhesive tape after the plasma treatment.  相似文献   
44.
The influence of long-distance oxygen plasma sterilization on surface properties of substrate material, i.e., medical poly(tetrafluoroethylene) (PTFE), and aging effect of these sterilized PTFE film surfaces were investigated by contact angle measurement, mass loss determination, scanning electron microscopy (SEM) as well as bacterial adhesion and platelet adhesion measurements in vitro, respectively. The changes in chemical structure of sterilized PTFE film were followed using X-ray photoelectron spectroscopy (XPS). As a result of plasma sterilization oxygen-containing functional groups (such as CO and CO), especially the CO group are introduced into PTFE surfaces, and thus pronounced increases of surface free energy and surface wettability are presented when the sample positions are within 0-40 cm. The film surface wettability degrades little as the aging time continued as long as 190 days. At the same time, the minimal surface degradation and damage occur on the sterilized PTFE when the sample position is at 40 cm. Moreover, the antibacterial adhesion and blood compatibility of sterilized PTFE surface are enhanced and the optimal effects are also obtained at 40 cm. The essential reason may be due to the optimal equilibrium between surface wettability and surface damage, which is achieved at 40 cm. Overall, of the surface properties of long-distance oxygen plasma sterilized PTFE analyzed, the sterilization at 40 cm is optimal.  相似文献   
45.
In this paper, we report on modifications in structural and optical properties of CdS thin films due to 190 keV Mn-ion implantation at 573 K. Mn-ion implantation induces disorder in the lattice, but does not lead to the formation of any secondary phase, either in the form of metallic clusters or impurity complexes. The optical band gap was found to decrease with increasing ion fluence. This is explained on the basis of band tailing due to the creation of localized energy states generated by structural disorder. Enhancement in the Raman scattering intensity has been attributed to the enhancement in the surface roughness due to increasing ion fluence. Mn-doped samples exhibit a new band in their photoluminescence spectra at 2.22 eV, which originates from the d-d (4T1 → 6A1) transition of tetrahedrally coordinated Mn2+ ions.  相似文献   
46.
In the vicinity of boundaries the bulk universality class of critical phenomena splits into several boundary universality classes, depending upon whether the tendency to order in the boundary is smaller or larger than in the bulk. For Ising universality class there are five different boundary universality classes: periodic, antiperiodic, free, fixed and mixed (mixture of the last two). In this paper we present the new set of the universal amplitude ratios for the mixed boundary universality class. The results are in perfect agreement with a perturbated conformal field theory scenario proposed by Cardy [J. Cardy, Nucl. Phys. B 270 (1986) 186].  相似文献   
47.
Plasma-boundaries floating in an ionized gas are usually negatively charged. They accumulate electrons more efficiently than ions leading to the formation of a quasi-stationary electron film at the boundaries. We propose to interpret the build-up of surface charges at inert plasma boundaries, where other surface modifications, for instance, implantation of particles and reconstruction or destruction of the surface due to impact of high energy particles can be neglected, as a physisorption process in front of the wall. The electron sticking coefficient se and the electron desorption time τe, which play an important role in determining the quasi-stationary surface charge, and about which little is empirically and theoretically known, can then be calculated from microscopic models for the electron-wall interaction. Irrespective of the sophistication of the models, the static part of the electron-wall interaction determines the binding energy of the electron, whereas inelastic processes at the wall determine se and τe. As an illustration, we calculate se and τe for a metal, using the simplest model in which the static part of the electron-metal interaction is approximated by the classical image potential. Assuming electrons from the plasma to loose (gain) energy at the surface by creating (annihilating) electron-hole pairs in the metal, which is treated as a jellium half-space with an infinitely high workfunction, we obtain se≈10-4 and τe≈10-2 s. The product seτe≈10-6 s has the order of magnitude expected from our earlier results for the charge of dust particles in a plasma but individually se is unexpectedly small and τe is somewhat large. The former is a consequence of the small matrix elements occurring in the simple model while the latter is due to the large binding energy of the electron. More sophisticated theoretical investigations, but also experimental support, are clearly needed because if se is indeed as small as our exploratory calculation suggests, it would have severe consequences for the understanding of the formation of surface charges at plasma boundaries. To identify what we believe are key issues of the electronic microphysics at inert plasma boundaries and to inspire other groups to join us on our journey is the purpose of this colloquial presentation.  相似文献   
48.
The influence of the unevenness of substrates immersed into plasma important for plasma-based treatment of materials were studied by computer experiment. The role of both substrate properties and plasma parameters was investigated. For this analysis the combination of multidimensional fluid modelling and particle simulation was used. The fluid part of our model consisted of continuity equations for all charged species, energy balance equation for electrons and Poisson equation. The basic scattering processes were also included. The particle simulation technique was used both for the calculation of electron energy distribution function and for the derivation of quantities characterising plasma-surface interaction. This approach enabled us to study in detail the structure of the sheath and presheath near metal substrates with realistic geometries and finite dimensions. The main attention was devoted to the influence of substrate geometry in both macroscopic and microscopic spatial scales on the local electric fields in plasma.  相似文献   
49.
In dusty plasmas, overlapping Debye spheres around dust grains could produce an attractive force between them. Its effects on static structures of two-dimensional (2D) dusty plasmas are studied here by using molecular dynamics simulations. Results, in terms of the equilibrium radial distribution function, are compared with those deduced from purely repulsive Debye-Hückel or Yukawa potential for different Coulomb-coupling and screening parameters. The effect of the attractive force is found quite noticeable for usual experimental conditions, and becomes more pronounced for larger screening parameter κ. In particular, it is observed that for large κ the attractive force is dominant, and dust grains tend to aggregate and form patterns with scattering voids.  相似文献   
50.
We propose to use a two-species Fermi gas with the interspecies s-wave Feshbach resonance to realize p-wave superfluidity in two dimensions. By confining one species of fermions in a two-dimensional plane immersed in the background three-dimensional Fermi sea of the other species, an attractive interaction is induced between two-dimensional fermions. We compute the pairing gap in the weak-coupling regime and show that it has the symmetry of px+ipy. Because the magnitude of the pairing gap increases toward the unitarity limit, it is possible that the critical temperature for the px+ipy-wave superfluidity becomes within experimental reach. The resulting system has a potential application to topological quantum computation using vortices with non-Abelian statistics. We also discuss aspects of our system in the unitarity limit as a “nonrelativistic defect conformal field theory (CFT)”. The reduced Schrödinger algebra, operator-state correspondence, scaling dimensions of composite operators, and operator product expansions are investigated.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号