首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4449篇
  免费   360篇
  国内免费   150篇
化学   3699篇
晶体学   43篇
力学   80篇
综合类   15篇
数学   87篇
物理学   1035篇
  2024年   15篇
  2023年   63篇
  2022年   113篇
  2021年   145篇
  2020年   193篇
  2019年   137篇
  2018年   107篇
  2017年   102篇
  2016年   170篇
  2015年   188篇
  2014年   159篇
  2013年   396篇
  2012年   338篇
  2011年   253篇
  2010年   192篇
  2009年   235篇
  2008年   189篇
  2007年   268篇
  2006年   234篇
  2005年   187篇
  2004年   188篇
  2003年   173篇
  2002年   137篇
  2001年   108篇
  2000年   77篇
  1999年   91篇
  1998年   63篇
  1997年   62篇
  1996年   54篇
  1995年   45篇
  1994年   39篇
  1993年   35篇
  1992年   30篇
  1991年   22篇
  1990年   19篇
  1989年   12篇
  1988年   21篇
  1987年   15篇
  1986年   12篇
  1985年   7篇
  1984年   11篇
  1982年   8篇
  1981年   4篇
  1980年   6篇
  1979年   4篇
  1978年   3篇
  1977年   3篇
  1975年   8篇
  1973年   3篇
  1972年   4篇
排序方式: 共有4959条查询结果,搜索用时 31 毫秒
131.
The molecular and electronic structures of some hypothetical sandwich-type -complexes of transition metals with fullerene C60 were modeled. The M-C60 bonds in 5-C60MCp+ complexes (M = Fe, Ru, Os) are less strong than the M-Cp bonds in ferrocene, ruthenocene, and osmocene, respectively. The 6-C60MC6H6 complexes (M = Cr, Mo, W) should be less stable than their classical analogs (C6H6)M(C6H6). The coordination of a metal atom with the fullerene at its pentagonal face is more energetically favorable than at a hexagonal face.Translated fromIzyestiya Akademii Nauk. Seriya Khimicheskaya, No. 4, pp. 598–601, April, 1994.We are grateful to V. I. Sokolov for discussion of the results obtained. This study was supported by the Russian Foundation for Basic Research (grants 93-03-4101 and 93-03-18725).  相似文献   
132.
The investigation of the reactivity and structure of organometallic compounds of alkali metals has experienced a blustering development in the last decades. This class includes compounds that are especially important for our understanding of chemical bonding and also quite simple, for example methyl alkali metal complexes, whose structures have been unequivocally determined. Organometallic compounds of alkali metals (and also magnesium) generally exist as ion aggregates whose properties can be significantly modified through solvation by, for example, ether or amines. Important advances in the synthesis of new compounds, especially those of the heavier alkali metals, have been based on these results. It was long believed that the alkali metals had little tendency to undergo coordination and that their coordination chemistry would offer few surprises. This picture has now changed completely. Results from crystal structure investigations have revealed a variety of often surprising structure types (rings, heterocubanes, chains, layers, etc.) not only with the organometallic compounds but also with the amides, imides, alkoxides, phenoxides, enolates, and even halides. A comparison reveals interesting similarities between compounds that appear to be so different and leads to a general classification of the structure types possible with C, N, O, and halo ligands.  相似文献   
133.
134.
The reaction of ethylene sulfide with 3-aminopropyltrimethoxysilane gave a new silylating agent, which was anchored onto a silica surface via the sol–gel procedure. This surface displayed a chelating moiety containing nitrogen and two sulfur basic centers potentially capable of extracting cations from aqueous solutions. The process of metal extraction was followed by a batch method, and fitted to a modified Langmuir equation. The maximum adsorption capacities found were: 2.06 ± 0.01, 3.72 ± 0.02, and 5.14 ± 0.02 mmol g−1 for Pb(II), Cd(II), and Hg(II), respectively. The enthalpies of bending are: −1.16 ± 0.04, −3.60 ± 0.10, and −8.94 ± 0.03 kJ mol−1 for Cd(II), Pb(II), and Hg(II), respectively. The Gibbs free energies of binding agree with the spontaneity of the proposed reactions between cations and basic centers.  相似文献   
135.
The use of transition-metal complexes as reagents for the synthesis of complex organic compounds has been under development for at least several decades, and many extraordinary organic transformations of profound potential have been realized. However, adoption of this chemistry by the practicing synthetic organic chemist has been inordinately slow, and only now are transition-metal reagents beginning to achieve their rightful place in the arsenal of organic synthesis. Several factors contributed to the initial reluctance of synthetic organic chemists to use organometallic reagents. Lacking education and experience in the ways of elements having d electrons, synthetic chemists viewed organometallic processes as something mysterious and unpredictable, and not to be discussed in polite society. Organometallic chemists did not help matters by advertising their latest advances as useful synthetic methodology, but restricting their studies to very simple organic systems lacking any serious functionality (e.g., the “methyl, ethyl, butyl, futile” syndrome). Happily, things have changed. Organometallic chemists have turned their attention to more complex systems, and more recently trained organic chemists have benefited from exposure to the application of transition metals. This combination has set the stage for major advances in the use of transition metals in the synthesis of complex organic compounds. This review deals with one aspect of this area, the use of transition metals in the synthesis of indoles.  相似文献   
136.
New tetradentate Schiff-base polymers, in which phenylene units alternate with salicylideneiminato units, have been prepared by condensation of 2,5-(didodecyloxy)-1,4-bis(3-formyl-4-hydroxyphenyl)benzene (DFHB) with appropriate diamines in a mixed solution of CHCl3/toluene/acetic acid with 31-79% yields. DFHB as the key building block was prepared by the Suzuki reaction of 2,5-(didodecyloxy)benzene-1,4-diboronic acid with 5-bromosalicylaldehyde in a two-phase solution of tetrahydrofuran/water in the presence of NaHCO3/Pd(PPh3)4 in 45% yield. The molecular structures of the prepared compounds were identified by spectroscopy. Their absorption spectroscopic profiles have been analyzed.  相似文献   
137.
A series of dinuclear complexes, [Tp(R)M--M'L(n)] [Tp(iPr(2) )M--Co(CO)(4) (1; M=Ni, Co, Fe, Mn); Tp(#)M--Co(CO)(4) (1'; M=Ni, Co); Tp(#)Ni--RuCp(CO)(2) (3')] (Tp(iPr(2) )=hydrotris(3,5-diisopropylpyrazolyl)borato; Tp(#) (Tp(Me(2),4-Br))=hydrotris(3,5-dimethyl-4-bromopyrazolyl)borato), has been prepared by treatment of the cationic complexes [Tp(iPr(2) )M(NCMe)(3)]PF(6) or the halo complexes [Tp(#)M--X] with the appropriate metalates. Spectroscopic and crystallographic characterization of 1-3' reveals that the tetrahedral, high-spin Tp(R)M fragment and the coordinatively saturated carbonyl-metal fragment (M'L(n)) are connected only by a metal-metal interaction and, thus, the dinuclear complexes belong to a unique class of xenophilic complexes. The metal-metal interaction in the xenophilic complexes is polarized, as revealed by their nu(CO) vibrations and structural features, which fall between those of reference complexes: covalently bonded species [R--M'L(n)] and ionic species [M'L(n)](-). Unrestricted DFT calculations for the model complexes [Tp(H(2) )Ni--Co(CO)(4)], [Tp(H(2) )Ni--Co(CO)(3)(PH(3))], and [Tp(H(2) )Ni--RuCp(CO)(2)] prove that the two metal centers are held together not by covalent interactions, but by electrostatic attractions. In other words, the obtained xenophilic complexes can be regarded as carbonylmetalates, in which the cationic counterpart interacts with the metal center rather than the oxygen atom of the carbonyl ligand. The xenophilic complexes show divergent reactivity dependent on the properties of donor molecules. Hard (N and O donors) and soft donors (P and C donors) attack the Tp(R)M part and the ML(n) moiety, respectively. The selectivity has been interpreted in terms of the hard-soft theory, and the reactions of the high-spin species 1-3' with singlet donor molecules should involve a spin-crossover process.  相似文献   
138.
The multielement trace analytical method ‘total reflection X-ray fluorescence’ (TXRF) has become a successfully established method in the semiconductor industry, particularly, in the ultra trace element analysis of silicon wafer surfaces. TXRF applications can fulfill general industrial requirements on daily routine of monitoring wafer cleanliness up to 300 mm diameter under cleanroom conditions. Nowadays, TXRF and hyphenated TXRF methods such as ‘vapor phase decomposition (VPD)-TXRF’, i.e. TXRF with a preceding surface and acid digestion and preconcentration procedure, are automated routine techniques (‘wafer surface preparation system’, WSPS). A linear range from 108 to 1014 [atoms/cm2] for some elements is regularly controlled. Instrument uptime is higher than 90%. The method is not tedious and can automatically be operated for 24 h/7 days. Elements such as S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Br, Sn, Sb, Ba and Pb are included in the software for standard peak search. The detection limits of recovered elements are between 1×1011 and 1×107 [atoms/cm2] depending upon X-ray excitation energy and the element of interest. For the determination of low Z elements, i.e. Na, Al and Mg, TXRF has also been extended but its implementation for routine analysis needs further research. At present, VPD-TXRF determination of light elements is viable in a range of 109 [atoms/cm2]. Novel detectors such as silicon drift detectors (SDD) with an active area of 5 mm2, 10 mm2 or 20 mm2, respectively, and multi-array detectors forming up to 70 mm2 are commercially available. The first SDD with 100 mm2 (!) area and integrated backside FET is working under laboratory conditions. Applications of and comparison with ICP-MS, HR-ICP-MS and SR-TXRF, an extension of TXRF capabilities with an extremely powerful energy source, are also reported.  相似文献   
139.
ACu9X4 ‐ New Compounds with CeNi8, 5Si4, 5 Structure (A: Sr, Ba; X: Si, Ge) The new compounds SrCu9Si4 (a = 8.146(1), c = 11.629(2)Å), BaCu9Si4 (a = 8.198(2), c = 11.735(2)Å), SrCu9Ge4 (a = 8.273(2), c = 11.909(5)Å), and BaCu9Ge4 (a = 8.338(4), c = 12.011(7)Å) are formed by reaction of the elements at 1000° ‐ 1100 °C. They are isotypic (I4/mcm, Z = 4) and crystallize in an ordered variant of the cubic NaZn13 type structure, also built up by the binary phase BaCu13. In the ternary compounds the positions of Cu2 are orderly occupied by copper and silicon and germanium, respectively. This results in a lowering of symmetry and a distortion of the polyhedra. The metallic conductivity of the compounds was confirmed by measurements on BaCu9Si4.  相似文献   
140.
采用密度分离、脱灰处理和逐级化学提取等间接方法,考察了铁岭煤中Pb, Cr, Co, Ni, V五个重金属元素的宏观结合形态,并在Φ25mm小型石英流化床反应装置上考察了上述五个重金属元素在热解过程中的挥发行为。研究发现,铁岭煤中Pb, Cr, Co, Ni, V均主要与非黄铁矿类矿物质相伴生, 且高达40%~60%赋存在硅酸盐类矿物质中。Pb的碳酸盐结合态和有机束缚的离子可交换态600℃前即可分解转化,而其硫化物和硫酸盐结合态在较高的热解温度下才能分解挥发;Co、Ni的硫化物和硫酸盐结合态在高温下可部分转换为有机结合的离子可交换态;而Cr、V的硫化物和硫酸盐结合态在高温下部分转化生成了新的热稳定相。在500℃~900℃范围内,Pb属半挥发性元素,Cr, Co, Ni, V属难挥发性元素。微量元素的挥发性极大地受其伴生环境、共存活泼元素等的影响,硅铝酸盐类矿物质对重金属元素的挥发有一定的抑制作用。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号