首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16686篇
  免费   252篇
  国内免费   222篇
化学   10001篇
晶体学   14篇
力学   716篇
综合类   40篇
数学   4030篇
物理学   2359篇
  2024年   119篇
  2023年   710篇
  2022年   511篇
  2021年   482篇
  2020年   1532篇
  2019年   1162篇
  2018年   1031篇
  2017年   882篇
  2016年   873篇
  2015年   711篇
  2014年   899篇
  2013年   3098篇
  2012年   997篇
  2011年   426篇
  2010年   371篇
  2009年   346篇
  2008年   300篇
  2007年   422篇
  2006年   333篇
  2005年   330篇
  2004年   287篇
  2003年   172篇
  2002年   100篇
  2001年   61篇
  2000年   62篇
  1999年   55篇
  1998年   68篇
  1997年   51篇
  1996年   31篇
  1995年   36篇
  1994年   43篇
  1993年   31篇
  1992年   28篇
  1991年   28篇
  1990年   25篇
  1989年   39篇
  1988年   44篇
  1987年   44篇
  1986年   32篇
  1985年   29篇
  1984年   48篇
  1983年   32篇
  1982年   55篇
  1981年   67篇
  1980年   62篇
  1979年   57篇
  1978年   20篇
  1977年   7篇
  1976年   5篇
  1974年   3篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
951.
In this paper, we propose an uncertainty quantification analysis, which is the continuation of a recent work performed in a deterministic framework. The fluid–structure system under consideration is the one experimentally studied in the sixties by Abramson, Kana, and Lindholm from the Southwest Research Institute under NASA contract. This coupled system is constituted of a linear acoustic liquid contained in an elastic tank that undergoes finite dynamical displacements, inducing geometrical nonlinear effects in the structure. The liquid has a free surface on which sloshing and capillarity effects are taken into account. The problem is expressed in terms of the acoustic pressure field in the fluid, of the displacement field of the elastic structure, and of the normal elevation field of the free surface. The nonlinear reduced-order model constructed in the recent work evoked above is reused for implementing the nonparametric probabilistic approach of uncertainties. The objective of this paper is to present a sensitivity analysis of this coupled fluid–structure system with respect to uncertainties and to use a classical statistical inverse problem for carrying out the experimental identification of the hyperparameter of the stochastic model. The analysis show a significant sensitivity of the displacement of the structure, of the acoustic pressure in the liquid, and of the free-surface elevation to uncertainties in both linear and geometrically nonlinear simulations.  相似文献   
952.
The tidal energy industry is progressing rapidly, but there are still barriers to overcome to realise the commercial potential of this sector. Large magnitude and highly variable loads caused by waves acting on the turbine are of particular concern. Composite blades with in-built bend-twist elastic response may reduce these peak loads, by passively feathering with increasing thrust. This could decrease capital costs by lowering the design loads, and improve robustness through the mitigation of pitch mechanisms. In this study, the previous research is extended to examine the performance of bend-twist blades in combined wave–current flow, which will frequently be encountered in the field. A scaled 3 bladed turbine was tested in the flume at IFREMER with bend-twist composite blades and equivalent rigid blades, sequentially under current and co-directional wave–current cases. In agreement with previous research, when the turbine was operating in current alone at higher tip speed ratios the bend-twist blades reduced the mean thrust and power compared to the rigid blades. Under the specific wave–current condition tested the average loads were similar on both blade sets. Nevertheless, the bend-twist blades substantially reduced the magnitudes of the average thrust and torque fluctuations per wave cycle, by up to 10% and 14% respectively.  相似文献   
953.
In order to investigate the effect of density ratio of fluid and solid on the convergence behavior of partitioned FSI algorithm, three strong-coupling partitioned algorithms (fixed-point method with a constant under-relaxation parameter, Aitken’s method and Quasi-Newton inverse least squares (QN-ILS) method) have been considered in the context of finite element method. We have employed the incompressible Navier–Stokes equations for a Newtonian fluid domain and the total Lagrangian formulation for a non-linear motion of solid domain. Linear-elastic (hyper-elastic) model has been employed for solid material with small (large) deformation. A pulsatile inlet-flow interacting with a 2D circular channel of linear-elastic material and a pressure wave propagation in a 3D flexible vessel have been simulated. Both linear-elastic and hyper-elastic (Mooney–Rivlin) models have been adopted for the 3D flexible vessel. From the present numerical experiments, we have found that QN-ILS outperforms the others leading to a robust convergence regardless of the density ratio for both linear-elastic and hyper-elastic models. On the other hand, the performances of the fixed-point method with a constant under-relaxation parameter and the Aitken’s method depend strongly on the density ratio, relaxation parameter selected for coupling iteration, and degree of deformation. Although the QN-ILS of this work is still slower than a monolithic method for serial computation, it has an advantage of easier parallelization due to the modularity of the partitioned FSI algorithm.  相似文献   
954.
This paper presents a new sensitivity analysis method for coupled acoustic–structural systems subjected to non-stationary random excitations. The integral of the response power spectrum density (PSD) of the coupled system is taken as the objective function. The thickness of each structural element is used as a design variable. A time-domain algorithm integrating the pseudo excitation method (PEM), direct differentiation method (DDM) and high precision direct (HPD) integration method is proposed for the sensitivity analysis of the objective function with respect to design variables. Firstly, the PEM is adopted to transform the sensitivity analysis under non-stationary random excitations into the sensitivity analysis under pseudo transient excitations. Then, the sensitivity analysis equation of the coupled system under pseudo transient excitations is derived based on the DDM. Moreover, the HPD integration method is used to efficiently solve the sensitivity analysis equation under pseudo transient excitations in a reduced-order modal space. Numerical examples are presented to demonstrate the validity of the proposed method.  相似文献   
955.
A nonlinear time-domain simulation model for predicting two-dimensional vortex-induced vibration (VIV) of a flexibly mounted circular cylinder in planar and oscillatory flow is presented. This model is based on the utilization of van der Pol wake oscillators, being unconventional since wake oscillators have typically been applied to steady flow VIV predictions. The time-varying relative flow–cylinder velocities and accelerations are accounted for in deriving the coupled hydrodynamic lift, drag and inertia forces leading to the cylinder cross-flow and in-line oscillations. The system fluid–structure interaction equations explicitly contain the time-dependent and hybrid trigonometric terms. Depending on the Keulegan–Carpenter number (KC) incorporating the flow maximum velocity and excitation frequency, the model calibration is performed, entailing a set of empirical coefficients and expressions as a function of KC and mass ratio. Parametric investigations in cases of varying KC, reduced flow velocity, cylinder-to-flow frequency ratio and mass ratio are carried out, capturing some qualitative features of oscillatory flow VIV and exploring the effects of system parameters on response prediction characteristics. The model dependence of hydrodynamic coefficients on the Reynolds number is studied. Discrepancies and limitations versus advantages of the present model with different feasible solution scenarios are illuminated to inform the implementation of wake oscillators as a computationally efficient prediction model for VIV in oscillatory flows.  相似文献   
956.
The generalized aerodynamic force (GAF) matrix is derived for the Unsteady Vortex Lattice Method (UVLM) without the assumption of out-of-plane dynamics. As a result, the approach naturally includes in-plane motion and forces unlike the doublet lattice method (DLM). The derived UVLM GAF is therefore applicable to industry-standard techniques for aeroelastic stability analyses, such as the p–k method. In this work, the fluid–structure interpolation is performed with radial basis functions for surface interpolation. The generalized aerodynamic forces computed with the UVLM are verified against the DLM from NASTRAN on a simple flat plate configuration. The ability of the UVLM to include steady loads is verified with a T-tail flutter case and the results confirm the importance of including steady loads for T-tail flutter analysis. The modal frequency domain VLM therefore provides the same level of efficiency and accuracy than the DLM, but without the restrictions and with the ability to handle complex geometries. It is therefore a viable replacement to the DLM.  相似文献   
957.
Stabilised mixed velocity–pressure formulations are one of the widely-used finite element schemes for computing the numerical solutions of laminar incompressible Navier–Stokes. In these formulations, the Newton–Raphson scheme is employed to solve the nonlinearity in the convection term. One fundamental issue with this approach is the computational cost incurred in the Newton–Raphson iterations at every load/time step. In this paper, we present an iteration-free mixed finite element formulation for incompressible Navier–Stokes that preserves second-order temporal accuracy of the generalised-alpha and related schemes for both velocity and pressure fields. First, we demonstrate the second-order temporal accuracy using numerical convergence studies for an example with a manufactured solution. Later, we assess the accuracy and the computational benefits of the proposed scheme by studying the benchmark example of flow past a fixed circular cylinder. Towards showcasing the applicability of the proposed technique in a wider context, the inf–sup stable P2–P1 pair for the formulation without stabilisation is also considered. Finally, the resulting benefits of using the proposed scheme for fluid–structure interaction problems are illustrated using two benchmark examples in fluid-flexible structure interaction.  相似文献   
958.
签字笔携带方便、书写流畅,现已成为常用的书写工具之一。在许多刑事及民事案件中,尤其在呈明显上升趋势的各类贪污、受贿案件中,经常会遇到由签字笔墨水形成的契约、合同、收据、借条等可疑文件中关于签字笔墨水字迹色痕的鉴定。对于字迹色痕形成时间的鉴定工作一直是困扰法庭  相似文献   
959.
比值导数荧光光谱法同时测定色氨酸和5-羟基色氨酸   总被引:2,自引:0,他引:2  
建立了比值导数荧光光谱法同时测定色氨酸和5-羟基色氨酸的方法。在比值导数荧光光谱法中,色氨酸浓度在4.0×10-6~2.0×10-5mol/L范围内比值导数荧光光谱峰高与其浓度成正比,线性相关系数为0.9901,检出限为1.3×10-7mol/L。5-羟基色氨酸浓度在4.0×10-8~2.0×10-5mol/L范围内比值导数光谱峰高与其浓度成正比,线性相关系数为0.9996,检出限为1.3×10-8mol/L。同时测定了实际样品中的色氨酸和5-羟基色氨酸,测定结果与高效液相色谱法有良好的一致性。  相似文献   
960.
微波辅助提取/HPLC分析石蒜中的生物碱   总被引:15,自引:0,他引:15  
石蒜科石蒜属(amaryllidaceae)植物,含有石蒜碱、力可拉敏和加兰他敏(图1)等生物碱,具有镇静、镇痛、解热、降压、抗炎、催吐、抗病毒、抗癌等作用[1]。目前石蒜生物碱的提取主要采用溶剂回流法(SRE),但SRE提取效率低、耗时、耗溶剂,而且有效成分易被破坏[2-3]。微波辅助提取法  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号