首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   203篇
  免费   19篇
  国内免费   57篇
化学   178篇
晶体学   6篇
力学   22篇
数学   19篇
物理学   54篇
  2024年   1篇
  2023年   5篇
  2022年   7篇
  2021年   13篇
  2020年   26篇
  2019年   13篇
  2018年   12篇
  2017年   19篇
  2016年   10篇
  2015年   15篇
  2014年   18篇
  2013年   17篇
  2012年   14篇
  2011年   16篇
  2010年   9篇
  2009年   12篇
  2008年   10篇
  2007年   11篇
  2006年   5篇
  2005年   5篇
  2004年   3篇
  2003年   8篇
  2002年   3篇
  2001年   4篇
  2000年   2篇
  1999年   2篇
  1998年   1篇
  1997年   1篇
  1996年   2篇
  1994年   2篇
  1993年   1篇
  1990年   2篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1985年   3篇
  1984年   1篇
  1982年   1篇
  1981年   1篇
  1978年   1篇
排序方式: 共有279条查询结果,搜索用时 109 毫秒
131.
The one‐ and two‐dimensional polymorphic cadmium polycarboxylate coordination polymers, catena‐poly[bis[μ2‐2‐(2‐methyl‐1H‐benzimidazol‐1‐yl)acetato‐κ3N3:O,O′]cadmium(II)], [Cd(C10H9N2O2)2]n, and poly[bis[μ2‐2‐(2‐methyl‐1H‐benzimidazol‐1‐yl)acetato‐κ3N3:O,O′]cadmium(II)], also [Cd(C10H9N2O2)2]n, were prepared under solvothermal conditions. In each structure, each CdII atom is coordinated by four O atoms and two N atoms from four different ligands. In the former structure, two crystallographically independent CdII atoms are located on twofold symmetry axes and doubly bridged in a μ2N:O,O′‐mode by the ligands into correspondingly independent chains that run in the [100] and [010] directions. Chains containing crystallographically related CdII atoms are linked into sheets viaπ–π stacking interactions. Sheets containing one of the distinct types of CdII atom are stacked perpendicular to [001] and alternate with sheets containing the other type of CdII atom. The second complex is a two‐dimensional homometallic CdII (4,4) net structure in which each CdII atom is singly bridged to four neighbouring CdII atoms by four ligands also acting in a μ2N:O,O′‐mode. A square‐grid network results and the three‐dimensional supramolecular framework is completed by π–π stacking interactions between the aromatic ring systems.  相似文献   
132.
133.
分别以三聚氰胺和三聚氰胺的聚合物为配体, 采用浸渍法合成了两种氧还原反应(ORR)催化剂Fe-N/C(1)和Fe-N/C(2). 通过X射线衍射光谱(XRD)、X射线光电子能谱(XPS)、透射电子显微镜(TEM)和电化学测试对催化剂的成分、形貌和电催化性能进行了表征. 结果表明, 以三聚氰胺聚合物为配体制备的Fe-N/C具有更高的ORR催化活性. 在高温热处理过程中, 催化剂表面能形成更多的石墨N活性点, 是其ORR性能提高的重要原因.  相似文献   
134.
A bifunctional oxygen electrocatalyst composed of iron carbide (Fe3C) nanoparticles encapsulated by nitrogen doped carbon sheets is reported. X‐ray photoelectron spectroscopy and X‐ray absorption near edge structure revealed the presence of several kinds of active sites (Fe?Nx sites, N doping sites) and the modulated electron structure of nitrogen doped carbon sheets. Fe3C@N‐CSs shows excellent oxygen evolution and oxygen reduction catalytic activity owing to the modulated electron structure by encapsulated Fe3C core via biphasic interfaces electron interaction, which can lower the free energy of intermediate, strengthen the bonding strength and enhance conductivity. Meanwhile, the contribution of the Fe?Nx sites, N doping sites and the effect of Fe3C core for the electrocatalytic oxygen reaction is originally revealed. The Fe3C@N‐CSs air electrode‐based zinc‐air battery demonstrates a high open circuit potential of 1.47 V, superior charge‐discharge performance and long lifetime, which outperforms the noble metal‐based zinc‐air battery.  相似文献   
135.
Hierarchical energy materials such as graphite are a backbone of various scientifically and commercially important emerging technologies including high-energy density energy storage systems with fast charging capability, multifunctional catalyst systems, selective membrane separation systems, and next-generation nuclear material systems. Consequently, it is extremely crucial to develop an efficient and cost-effective route of bulk hierarchical material synthesis (e.g., carbonaceous materials with a well-controlled fraction of the graphitic content) to cater the extraordinary operational and energy material requirements in a very complex coupled thermophysicochemical environment. Here we present a fabrication of Polyacrylonitrile (PAN) derived carbon films and fibers (~with linear dimension ~100 nm) via electrospinning and spin coating methods ensued by a heat-treatment in the range of 1000–3000 °C under inert atmospheric conditions. Intriguingly, we observed at least a two orders of magnitude enhancement (~134%) in length of graphitic plane accompanied by 36% more graphitization when the carbonization temperature increased from 1000 °C to 3000 °C. Such significant enhancements were attributed to the differences in the fundamental nanomorphology of initial carbonaceous materials and their subsequent kinetic evolution as it was more favorable for underlying graphene layers in films to stack and bond to the adjacent ones without strong rotations as compared to fibers, which were further evident from fewer voids and cracks in the films. The covalent cross-links, substrate effect and physical entanglements of carbon domains in PAN-derived carbon films contributed to a higher graphitic length owing to more shear stress between the graphene layers, compared to fibers and undergoes an enormous transformation from turbostratic structures to ordered state along with nitrogen removing over high temperature heating. This morphology dependent graphitization was also investigated from computational approach and concluded in the similar thoughts. The outcomes from this systematic study can be beneficial to the carbon research community focusing in the morphology dependent applications, for instance catalysis, energy storage, sensors etc.  相似文献   
136.
Since Fujishima and Honda demonstrated the photoelectrochemical water splitting on TiO2 photoanode and Pt counter electrode, photocatalysis has been considered as one of the most promising technologies for solving both the problems of environmental pollution and energy shortage. This process can effectively use solar energy, the most abundant energy resource on the earth, to drive various catalytic reactions, such as water splitting, CO2 reduction, organic pollutant degradation, and organic synthesis, for energy generation and environmental purification. Except for the various metal-based semiconductors, such as metal oxides, metal sulfides, and metal oxynitrides, developed for photocatalysis, graphitic carbon nitride (g-C3N4) has attracted significant attention in the recent years because of its earth abundancy, non-toxicity, good stability, and relatively narrow band gap (2.7 eV) for visible light response. However, g-C3N4 suffers from insufficient absorption of visible light in the solar spectrum and rapid recombination of photogenerated electrons and holes, thus resulting in low photocatalytic activity. Until now, various strategies have been developed to enhance the photocatalytic activity of g-C3N4, including element doping, nanostructure and heterostructure design, and co-catalyst decoration. Among these methods, element doping has been found to be very effective for adjusting the unique electronic and molecular structures of g-C3N4, which could significantly expand the range of photoresponse under visible light and improve the charge separation. Especially, non-metal doping has been well investigated frequently to improve the photocatalytic activity of g-C3N4. The non-metal dopants commonly used for the doping of g-C3N4 include oxygen (O), phosphorus (P), sulfur (S), boron (B), and halogen (F, Cl, Br, I) and also carbon (C) and nitrogen (N) (for self-doping), as they are easily accessible and can be introduced into the g-C3N4 framework through different physical and chemical synthetic methods. In this review article, the structural and optical properties of g-C3N4 is introduced first, followed by a brief introduction to the modification of g-C3N4 as photocatalysts. Then, the progress in the non-metal doped g-C3N4 with improved photocatalytic activity is reviewed in detail, with the photocatalytic mechanisms presented for easy understanding of the fundamentals of photocatalysis and for guiding in the design of novel g-C3N4 photocatalysts. Finally, the prospects of the modification of g-C3N4 for further advances in photocatalysis is presented.  相似文献   
137.
Carbon nanostructures such as carbon nanotubes (CNTs) and graphene sheets have attracted great attention due to their exceptionally high strength and elastic strain. These extraordinary mechanical properties, however, can be affected by the presence of defects in their structures. When a material contains multiple defects, it is expected that the stress concentration of them superposes if the separation distances of the defects are low, which causes a more reduction of the strength. On the other hand, it is believed that if the defects are far enough such that their affected areas are distinct, their behavior is similar to a material with single defect. In this article, molecular dynamics (MD) is used to explore the influence of separation distance of double vacancy defects on the mechanical properties of single-layered graphene sheets (SLGSs). To this end, critical stress and strain of SLGSs containing double vacancy with different distances are determined and the results are compared with those of perfect SLGSs and graphene sheets with single vacancy defect. The results reveal that the ultimate strength of the SLGS with double vacancy tends to the one with a single vacancy when the separation distance becomes further. In this regard, the threshold distance beyond which double defects behave like a single one is examined. Finally, Young’s modulus of perfect, single and double vacancy defected graphene sheets with different separation distances is determined. It is concluded that this property is slightly affected by the separation distance.  相似文献   
138.
提出了用X射线荧光光谱法测定镀锌钢板镀层(包括锌层、锌铁合金层、钝化层、磷化层和耐指纹层等)的质量。详细叙述了用于上述各层测定所需的系列标准样品的制备方法,分别通过对各不同层的特征组分的荧光强度进行测定,并根据校准曲线计算,分别得到各不同层的单位面积质量(g·m-2)。根据测定各不同组分时谱线荧光强度的强弱,选择不同的测量时间,试验选择直径为30 mm的测量面积。采用与样品相同类型的标准样品作校准曲线,重复10次测定6种镀层样品,其测定值的相对标准偏差在0.10%~0.32%之间。各镀层的测定值与重量法及电感耦合等离子体原子发射光谱法的测定值相比,经t-检验法验证(α=0.05),不存在显著差异。  相似文献   
139.
胡小颖  王淑敏  裴艳慧  田宏伟  朱品文 《物理学报》2013,62(3):38101-038101
利用等离子体化学气相沉积技术, 在引入Ti过渡层后的Co膜表面一步制备出碳纳米片-碳纳米管复合材料, 研究了Co膜厚度对复合材料形貌及场发射性质的影响. 当Co薄膜厚度为11 nm时, 得到了垂直基片定向生长的碳纳米管和碳纳米片复合物, 此时, 碳纳米片分布在碳纳米管的管壁上和管的顶端, 样品的场发射性能最佳.  相似文献   
140.
A low pressure pilot scale hydrodynamic cavitation (HC) reactor with 30 L volume, using fixed scrap iron sheets, as the heterogeneous catalyst, with no external source of H2O2 was devised to investigate the effects of operating parameters of the HC reactor performance. In situ generation of Fenton reagents suggested an induced advanced Fenton process (IAFP) to explain the enhancing effect of the used catalyst in the HC process. The reactor optimization was done based upon the extent of decolorization (ED) of aqueous solution of Rhodamine B (RhB). To have a perfect study on the pertinent parameters of the heterogeneous catalyzed HC reactor, the following cases as, the effects of scrap iron sheets, inlet pressure (2.4–5.8 bar), the distance between orifice plates and catalyst sheets (submerged and inline located orifice plates), back-pressure (2–6 bar), orifice plates type (4 various orifice plates), pH (2–10) and initial RhB concentration (2–14 mg L?1) have been investigated. The results showed that the highest cavitational yield can be obtained at pH 3 and initial dye concentration of 10 mg L?1. Also, an increase in the inlet pressure would lead to an increase in the ED. In addition, it was found that using the deeper holes (thicker orifice plates) would lead to lower ED, and holes with larger diameter would lead to the higher ED in the same cross-sectional area, but in the same holes’ diameters, higher cross-sectional area leads to the lower ED. The submerged operation mode showed a greater cavitational effects rather than the inline mode. Also, for the inline mode, the optimum value of 3 bar was obtained for the back-pressure condition in the system. Moreover, according to the analysis of changes in the UV–Vis spectra of RhB, both degradation of RhB chromophore structure and N-deethylation were occurred during the catalyzed HC process.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号