首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4144篇
  免费   745篇
  国内免费   454篇
化学   4000篇
晶体学   65篇
力学   70篇
综合类   38篇
数学   76篇
物理学   1094篇
  2024年   16篇
  2023年   84篇
  2022年   328篇
  2021年   297篇
  2020年   305篇
  2019年   234篇
  2018年   198篇
  2017年   256篇
  2016年   326篇
  2015年   303篇
  2014年   350篇
  2013年   390篇
  2012年   360篇
  2011年   331篇
  2010年   215篇
  2009年   261篇
  2008年   186篇
  2007年   151篇
  2006年   132篇
  2005年   116篇
  2004年   88篇
  2003年   55篇
  2002年   60篇
  2001年   33篇
  2000年   41篇
  1999年   17篇
  1998年   17篇
  1997年   25篇
  1996年   23篇
  1995年   14篇
  1994年   14篇
  1993年   17篇
  1992年   10篇
  1991年   14篇
  1990年   9篇
  1989年   6篇
  1988年   7篇
  1987年   7篇
  1986年   7篇
  1985年   5篇
  1984年   9篇
  1983年   4篇
  1982年   16篇
  1981年   2篇
  1980年   1篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
排序方式: 共有5343条查询结果,搜索用时 11 毫秒
931.
《中国化学》2018,36(6):502-506
Fluorination of conjugated polymers is one of the effective strategies to tune the molecular energy levels and morphology for high efficient polymer solar cells (PSCs). Herein, two novel donor‐acceptor conjugated polymers, PffBT and PBT, based on bis(3,5‐bis(hexyloxy)phenyl)benzo[1,2‐ b:4,5‐b']dithiophene and benzo[c][1,2,5]thiadiazole (BT) with or without fluorination, respectively, were synthesized, and their photovoltaic properties were compared. The polymer PffBT based on fluorinated BT showed lower frontier energy levels, improved polymer ordering, and a well‐developed fibril structure in the blend with PC71BM. As a result, the PSCs based on PffBT/PC71BM exhibit a superior power conversion efficiency (PCE) of 8.6% versus 4.4% for PBT‐based devices, due to a high space charge limit current (SCLC) hole mobility, mixed orientation of polymer crystals in the active layer, and low bimolecular recombination.  相似文献   
932.
Star-shaped electron acceptors based on perylene bisimide as end groups and spiro-aromatic core linked with ethynyl units were developed for nonfullerene solar cells. Ethynyl linkers are able to improve the planarity of conjugated backbone, resulting in enhanced electron mobility and power conversion efficiency in solar cells.  相似文献   
933.
934.
After a long period as model compounds in basic research [2.2]paracyclophanes are quickly gaining in practical importance. They can be incorporated into numerous polymeric systems in which they either lose (the so-called Parylenes) or retain their layered structure, and they can be used for the construction of unsaturated molecular scaffolds characterized not only by conventional (lateral) pi-electron overlap but also by cofacial pi-electron interactions. Surfaces generated from and with [2.2]paracyclophanes possess interesting biological, photophysical, and optoelectronic properties.  相似文献   
935.
936.
As a part of our ongoing search for a safe and efficient anti-tumor vaccine, we attempted to determine whether the molecular nature of certain tumor antigens would influence immune responses against tumor cells. As compared with freeze-thawed or formaldehyde-fixed tumor antigens, heat-denatured tumor antigens elicited profound anti-tumor immune responses and greatly inhibited the growth of live tumor cells. The heat-denatured tumor antigens induced a substantial increase in the anti-tumor CTL response in the absence of any adjuvant material. This response appears to be initiated by strong activation of the antigen-presenting cells, which may recognize heat-denatured protein antigens. Upon recognition of the heat-denatured tumor antigens, macrophages and dendritic cells were found to acutely upregulate the expression of co-stimulatory molecules such as B7.2, as well as the secretion of inflammatory cytokines such as IL-12 and TNF-alpha. The results of this study indicate that heat-denatured tumor extracts might elicit protective anti-tumor adaptive immune responses and also raise the possibility that a safe and efficient adjuvant-free tumor vaccine might be developed in conjunction with a dendritic cell-based tumor vaccine.  相似文献   
937.
To achieve the Fe−N−C materials with both high activity and durability in proton exchange membrane fuel cells, the attack of free radicals on Fe−N4 sites must be overcome. Herein, we report a strategy to effectively eliminate radicals at the source to mitigate the degradation by anchoring CeO2 nanoparticles as radicals scavengers adjacent (Scaad-CeO2) to the Fe−N4 sites. Radicals such as ⋅OH and HO2⋅ that form at Fe−N4 sites can be instantaneously eliminated by adjacent CeO2, which shortens the survival time of radicals and the regional space of their damage. As a result, the CeO2 scavengers in Fe−NC/Scaad-CeO2 achieved ∼80 % elimination of the radicals generated at the Fe−N4 sites. A fuel cell prepared with the Fe−NC/Scaad-CeO2 showed a smaller peak power density decay after 30,000 cycles determined with US DOE PGM-relevant AST, increasing the decay of Fe−NCPhen from 69 % to 28 % decay.  相似文献   
938.
The interfacial electronic structure of perovskite layers and transport layers is critical for the performance and stability of perovskite solar cells (PSCs). The device performance of PSCs can generally be improved by adding a slight excess of lead iodide (PbI2) to the precursor solution. However, its underlying working mechanism is controversial. Here, we performed a comprehensive study of the electronic structures at the interface between CH3NH3PbI3 and C60 with and without the modification of PbI2 using in situ photoemission spectroscopy measurements. The correlation between the interfacial structures and the device performance was explored based on performance and stability tests. We found that there is an interfacial dipole reversal, and the downward band bending is larger at the CH3NH3PbI3/C60 interface with the modification of PbI2 as compared to that without PbI2. Therefore, PSCs with PbI2 modification exhibit faster charge carrier transport and slower carrier recombination. Nevertheless, the modification of PbI2 undermines the device stability due to aggravated iodide migration. Our findings provide a fundamental understanding of the CH3NH3PbI3/C60 interfacial structure from the perspective of the atomic layer and insight into the double-edged sword effect of PbI2 as an additive.  相似文献   
939.
Organoid is an emerging frontier technology in the field of life science, in which pluripotent stem cells or tissue-derived differentiated/progenitor cells form 3D structures according to their multi-directional differentiation potential and self-assembly ability. Nowadays, although various types of organoids are widely investigated, their construction is still complicated in operation, uncertain in yield, and poor in reproducibility for the structure and function of native organs. Constructing a biomimetic microenvironment for stem cell proliferation and differentiation in vitro is recognized as a key to driving this field. This review reviews the recent development of engineered biomimetic microenvironments for organoids. First, the composition of the matrix for organoid culture is summarized. Then, strategies for engineering the microenvironment from biophysical, biochemical, and cellular perspectives are discussed in detail. Subsequently, the newly developed monitoring technologies are also reviewed. Finally, a brief conclusion and outlook are presented for the inspiration of future research.  相似文献   
940.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号