首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24267篇
  免费   2847篇
  国内免费   3270篇
化学   9714篇
晶体学   104篇
力学   2026篇
综合类   177篇
数学   7769篇
物理学   10594篇
  2024年   76篇
  2023年   254篇
  2022年   488篇
  2021年   596篇
  2020年   755篇
  2019年   701篇
  2018年   703篇
  2017年   792篇
  2016年   941篇
  2015年   837篇
  2014年   1208篇
  2013年   2036篇
  2012年   1304篇
  2011年   1551篇
  2010年   1216篇
  2009年   1580篇
  2008年   1627篇
  2007年   1675篇
  2006年   1395篇
  2005年   1184篇
  2004年   964篇
  2003年   981篇
  2002年   913篇
  2001年   721篇
  2000年   741篇
  1999年   621篇
  1998年   564篇
  1997年   432篇
  1996年   293篇
  1995年   285篇
  1994年   238篇
  1993年   238篇
  1992年   223篇
  1991年   182篇
  1990年   201篇
  1989年   189篇
  1988年   166篇
  1987年   166篇
  1986年   138篇
  1985年   140篇
  1984年   139篇
  1983年   79篇
  1982年   113篇
  1981年   106篇
  1980年   94篇
  1979年   98篇
  1978年   77篇
  1977年   76篇
  1976年   70篇
  1973年   61篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
This study presents the experimental and theoretical study of highly internally Al‐doped TiO2 nanoparticles. Two synthesis methods were used and detailed characterization was performed. There were differences in the doping and the crystallinity, but the nanoparticles synthesized with the different methods share common features. Anatase to rutile transformation occurred at higher temperatures with Al doping. X‐ray photoelectron spectroscopy showed the generation of oxygen vacancies, which is an interesting feature in photocatalysis. In turn, the band‐gap energy and the valence band did not change appreciably. Periodic density functional calculations were performed to model the experimentally doped structures, the formation of the oxygen vacancies, and the band gap. Calculation of the density of states confirmed the experimental band‐gap energies. The theoretical results confirmed the presence of Ti4+ and Al3+. The charge density study and electron localization function analysis indicated that the inclusion of Al in the anatase structure resulted in a strengthening of the Ti?O bonds around the vacancy.  相似文献   
992.
UV-Vis spectrum and the third-order nonlinear optical properties of the chiral camphor-derived β-diketonate have been studied at the B3LYP/6-31G* level. The results showed that the introduction of electron-drawing group-CF3 and-C3F7 on β-diketonate made the strongest absorption peak red-shift and the lowest energy absorption blue-shied. Introduction of-OC2H5 on the benzene or pyridine ring made the lowest energy absorption blue-shift. When the-C2H3 was introduced on the benzene or pyridine ring, the lowest energy absorption was red-shifted. Introduction of electron-donating group on β-diketonate can enlarge their nonlinear optical properties. On the contrary, the introduction of electron-drawing group dropped it down.  相似文献   
993.
Pure and Mn-doped NaTaO3 nanoparticles were synthesized by a simple hydro- thermal method. XRD and XPS results suggested that manganese ions were successfully doped into the NaTaO3 crystalline in Mn2+ state. UV-vis diffuse reflectance spectra revealed the obvious red-shift in the series of manganese doped NaTaO3 nanoparticles, resulting in a decrease in the band gap of NaTaO3 with the increase of Mn2+ doping concentration. The photo-degradation experiment indicated that manganese doped NaTaO3 showed good photocatalytic performance and methylene blue(MB) degradation is improved with lower doping concentration of manganese ions under visible light. The simulation of energy band structure by density functional theory unfolded that the substitution of Ta5+ ions by Mn2+ ions resulted in an intermediate band(IB) below the bottom of the conduction band(CB), which was mainly attributed to the state of Mn 3d.  相似文献   
994.
Density functional theory calculations have been performed to study the interaction of small silver clusters, Ag2 ~Ag9, with HCN. The adsorption of HCN on-top site of the silver cluster, among various possible sites, is energetically preferred. The adsorption energies of HCN on the silver clusters reach a local maximum at n = 4, which is only about 0.450 eV, indicating that the adsorbed HCN molecule is weakly perturbed. The adsorbed C–N and C–H stretching frequencies are blue- and red-shifted compared with the values of free HCN, respectively.  相似文献   
995.
吴文鹏  曹艳 《化学研究》2014,25(6):609-615
用密度泛函理论优化了三苯甲烷(1)和一系列三(4-硝基苯基)甲烷衍生物2,3和4的几何结构,并计算了其红外光谱和拉曼光谱;通过与实验光谱的对比,对实验光谱中的谱峰进行了指认,并从理论上纠正了部分对3和4红外光谱谱峰不合适的实验指认;同时预测了2,3和4的拉曼光谱.结果表明,几种化合物的振动光谱计算结果与相应的实验结果吻合良好;且化合物2,3和4的拉曼光谱具有相似性.  相似文献   
996.
Pyrite acts as a catalyst in the mineral processing, and the speed of ferric ion reduction and mineral decomposition increases with increasing cathodic points. In this study, the ferric ion interaction on the (100) and (110) surfaces of pyrite was studied using the density functional theory calculations. The analysis of stability, density of states, and electron density were performed to understand the interaction between the ferric ion and pyrite surfaces. The results showed that pyrite surface is chemically active and tends to absorb ferric ion between two surface sulfur atoms. The hyperconjugation between the 3d orbital of ferric ion and the 3p or 3d orbitals of surface atoms provides the conditions for the Fe3+ ion adsorption. The molecular orbital (MO) and electron density analyses indicate that the 3p orbitals of S atoms play a more important role in bonds formations relative to the 3d orbitals. The (110) surface is more active, and the adsorption energy is larger than that of surface (100), which is the result of decreased cation coordination and the presence of sulfur at the surface. Subsequently, the interaction of the Fe2+ ion, as product of Fe3+ ion reduction and its competitor for adsorption, on the surfaces was studied. The Fe2 + ion adsorbs stronger at the surface of (110), and the adsorption energies at (100) and (110) surfaces were obtained as −24 and −47 kcal/mol, respectively. In general, the Fe3+ ion is a stronger oxidizing agent than Fe2+ on pyrite surfaces.  相似文献   
997.
This paper is concerned with the experimental testing and the constitutive modelling of a thermoplastic microcellular polyethylene-terephthalate (MC-PET) foam on the temperature range of 21–210 °C in order to investigate the temperature-dependent performance of the applied parallel viscoelastic-viscoplastic material model. By means of carefully designed uniaxial mechanical tests in temperature chamber, the viscous, elastic and yielding behaviours of the investigated material are identified, which are then applied for selecting suitable viscoelastic-viscoplastic constitutive models. The material characterization process is conducted using finite-element-based fitting method, including also the analysis of the applied numerical optimization algorithm. The fitting results are used to analyse the parameter sensitivity and to propose closed-form analytical relations for the temperature dependency of the material parameters. Finally, the utilisation of the analytical temperature functions for speeding up the parameter-fitting process is also demonstrated.  相似文献   
998.
Density functional theory has been used to study the biologically important coenzyme NADPH and its oxidized form NADP+. It was found that free NADPH prefers a compact structure in gas phase and exists in more extended geometries in aqueous solution. Ultraviolet–visible absorption spectra in aqueous solution were calculated for NADPH with an explicit treatment of 100 surrounding water molecules in combination with the COSMO solvation model for bulk hydration effects. The obtained spectra using the B3LYP hybrid density functional agree quite well with experimental data. The changes of Gibbs free energies ΔG in reactions of NADPH with O2 observed experimentally in cardiovascular and in chemical systems, that is, NADPH + 2 3O2 → NADP+ + 2 O2 + H+ and NADPH + 1O2 + H+ → NADP+ + H2O2, respectively, were calculated. The NADPH oxidation reaction in the cardiovascular system cannot proceed without activation since the obtained ΔG is positive. The reaction of NADPH in the chemical system with singlet oxygen was found to proceed in two ways, each consisting of two steps, that is, NADPH firstly reacts with 1O2 barrierlessly to form NADP+ and HO2, from which H2O2 is formed in a spontaneous reaction with H+, or 1O2 and H+ initially form 1HO2+, which further reacts with NADPH to yield NADP+ and H2O2. © 2019 The Authors. Journal of Computational Chemistry published by Wiley Periodicals, Inc.  相似文献   
999.
We present PyCDFT, a Python package to compute diabatic states using constrained density functional theory (CDFT). PyCDFT provides an object-oriented, customizable implementation of CDFT, and allows for both single-point self-consistent-field calculations and geometry optimizations. PyCDFT is designed to interface with existing density functional theory (DFT) codes to perform CDFT calculations where constraint potentials are added to the Kohn–Sham Hamiltonian. Here, we demonstrate the use of PyCDFT by performing calculations with a massively parallel first-principles molecular dynamics code, Qbox, and we benchmark its accuracy by computing the electronic coupling between diabatic states for a set of organic molecules. We show that PyCDFT yields results in agreement with existing implementations and is a robust and flexible package for performing CDFT calculations. The program is available at https://dx.doi.org/10.5281/zenodo.3821097 .  相似文献   
1000.
Thermal storage and transfer fluids have important applications in industrial, transportation, and domestic settings. Current thermal fluids have relatively low specific heats, often significantly below that of water. However, by introducing a thermochemical reaction to a base fluid, it is possible to enhance the fluid's thermal properties. In this work, density functional theory (DFT) is used to screen Diels–Alder reactions for use in aqueous thermal fluids. From an initial set of 52 reactions, four are identified with moderate aqueous solubility and predicted turning temperature near the liquid region of water. These reactions are selectively modified through 60 total functional group substitutions to produce novel reactions with improved solubility and thermal properties. Among the reactions generated by functional group substitution, seven have promising predicted thermal properties, significantly improving specific heat (by as much as 30.5%) and energy storage density (by as much as 4.9%) compared to pure water.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号