首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   113篇
  免费   5篇
  国内免费   3篇
化学   70篇
力学   2篇
综合类   2篇
数学   7篇
物理学   40篇
  2024年   1篇
  2023年   2篇
  2022年   5篇
  2021年   7篇
  2020年   13篇
  2019年   3篇
  2018年   5篇
  2017年   4篇
  2016年   3篇
  2015年   2篇
  2014年   5篇
  2013年   7篇
  2012年   4篇
  2011年   7篇
  2010年   5篇
  2009年   8篇
  2008年   4篇
  2007年   5篇
  2006年   2篇
  2005年   1篇
  2003年   2篇
  2002年   1篇
  2001年   4篇
  2000年   1篇
  1999年   2篇
  1998年   8篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1993年   2篇
  1985年   4篇
  1981年   1篇
排序方式: 共有121条查询结果,搜索用时 140 毫秒
81.
Previously we have demonstrated that calcinated antler cancellous bone(CACB)has great potential for bone defect repair,due to its highly similar composition and architecture to natural extracellular bone matrix.This study is aiming at seeking for an optimal strategy of combined application of CACB and bone marrow mesenchymal stem cells(BMSCs)in bone defect repair.In vitro study demonstrated that CACB promoted the adhesion,spreading and viability of BMSCs.Increased extracellular matrix production and expression of osteogenic markers in BMSCs were observed when seeded on CACB scaffolds.The cells ceased to proliferation in the dual effect of CACB and osteogenic induction at the early stage of incubation. Hence synergistic effect of CACB combined with autologous undifferentiated BMSCs in rabbit mandible critical-sized defect repair was further evaluated.Histological analysis results showed that loading the CACB with autologous BMSCs resulted in enhanced new bone formation and angiogenesis when compared with implanted CACB alone.These findings indicate that the combination of CACB and autologous BMSCs should become potential routes to improve bone repair efficiency  相似文献   
82.
Chaos and the natural evolution of tumor systems can lead to the failure of tumor therapies. Herein, we demonstrate that iridium oxide nanoparticles (IrOx) possess acid‐activated oxidase and peroxidase‐like functions and wide pH‐dependent catalase‐like properties. The integration of glucose oxidase (GOD) unlocked the oxidase and peroxidase activities of IrOx by the production of gluconic acid from glucose by GOD catalysis in cancer cells, and the produced H2O2 was converted into O2 to compensate its consumption in GOD catalysis owing to the catalase‐like function of the nanozyme, thus resulting in the continual consumption of glucose and the self‐supply of substrates to generate superoxide anion and hydroxyl radical. Moreover, IrOx can constantly consume glutathione (GSH) by self‐cyclic valence alternation of IrIV and IrIII. These cascade reactions lead to a “butterfly effect” of initial starvation therapy and the subsequent pressure of multiple reactive oxygen species (ROS) to completely break the self‐adaption of cancer cells.  相似文献   
83.
Chaos and the natural evolution of tumor systems can lead to the failure of tumor therapies. Herein, we demonstrate that iridium oxide nanoparticles (IrOx) possess acid-activated oxidase and peroxidase-like functions and wide pH-dependent catalase-like properties. The integration of glucose oxidase (GOD) unlocked the oxidase and peroxidase activities of IrOx by the production of gluconic acid from glucose by GOD catalysis in cancer cells, and the produced H2O2 was converted into O2 to compensate its consumption in GOD catalysis owing to the catalase-like function of the nanozyme, thus resulting in the continual consumption of glucose and the self-supply of substrates to generate superoxide anion and hydroxyl radical. Moreover, IrOx can constantly consume glutathione (GSH) by self-cyclic valence alternation of IrIV and IrIII. These cascade reactions lead to a “butterfly effect” of initial starvation therapy and the subsequent pressure of multiple reactive oxygen species (ROS) to completely break the self-adaption of cancer cells.  相似文献   
84.
Angle SR  Sena K  Sumner DR  Virdi AS 《Ultrasonics》2011,51(3):281-288
Bone growth and repair are under the control of biochemical and mechanical signals. Low-intensity pulsed ultrasound (LIPUS) stimulation at 30 mW/cm2 is an established, widely used and FDA approved intervention for accelerating bone healing in fractures and non-unions. Although this LIPUS signal accelerates mineralization and bone regeneration, the actual intensity experienced by the cells at the target site might be lower, due to the possible attenuation caused by the overlying soft tissue. The aim of this study was to investigate whether LIPUS intensities below 30 mW/cm2 are able to provoke phenotypic responses in bone cells. Rat bone marrow stromal cells were cultured under defined conditions and the effect of 2, 15, 30 mW/cm2 and sham treatments were studied at early (cell activation), middle (differentiation into osteogenic cells) and late (biological mineralization) stages of osteogenic differentiation. We observed that not only 30 mW/cm2 but also 2 and 15 mW/cm2, modulated ERK1/2 and p38 intracellular signaling pathways as compared to the sham treatment. After 5 days with daily treatments of 2, 15 and 30 mW/cm2, alkaline phosphatase activity, an early indicator of osteoblast differentiation, increased by 79%, 147% and 209%, respectively, compared to sham, indicating that various intensities of LIPUS were able to initiate osteogenic differentiation. While all LIPUS treatments showed higher mineralization, interestingly, the highest increase of 225% was observed in cells treated with 2 mW/cm2. As the intensity increased to 15 and 30 mW/cm2, the increase in the level of mineralization dropped to 120% and 82%. Our data show that LIPUS intensities lower than the current clinical standard have a positive effect on osteogenic differentiation of rat bone marrow stromal cells. Although Exogen™ at 30 mW/cm2 continues to be effective and should be used as a clinical therapy for fracture healing, if confirmed in vivo, the increased mineralization at lower intensities might be the first step towards redefining the most effective LIPUS intensity for clinical use.  相似文献   
85.
This review focuses on our basic study results and clinical experience of fluorescence endoscopy for the gastrointestinal (GI) tract. Collagen, which fluoresces in the green wavelength range, is one of the major sources of tissue autofluorescence (AF) and AF imaging systems are now available. With their use, however, it is important to take into account tissue changes other than, or in addition to, changes in gross tissue morphology. These may include alterations in the local blood volume, tissue metabolic activity, and relative fluorophore concentrations. New AF imaging systems are very easy to use, because white light endoscopy can be changed to AF at the push of a button, and hold great promise for diagnosis of early carcinomas and premalignant lesions in the GI tract. In particular, AF endoscopy has potential for identification of small or flat tumors, tumor margins and premalignant lesions in Barrett’s esophagus, as well as for assessing tumor grade and response to therapy. However, large-scale studies are needed to clarify the clinical impact of this new diagnostic approach.  相似文献   
86.
Magnetic resonance spectroscopic imaging (MRSI) provides information about the spatial metabolic heterogeneity of an organ in the human body. In this way, MRSI can be used to detect tissue regions with abnormal metabolism, e.g. tumor tissue. The main drawback of MRSI in clinical practice is that the analysis of the data requires a lot of expertise from the radiologists. In this article, we present an automatic method that assigns each voxel of a spectroscopic image of the brain to a histopathological class. The method is based on Canonical Correlation Analysis (CCA), which has recently been shown to be a robust technique for tissue typing. In CCA, the spectral as well as the spatial information about the voxel is used to assign it to a class. This has advantages over other methods that only use spectral information since histopathological classes are normally covering neighbouring voxels. In this paper, a new CCA-based method is introduced in which MRSI and MR imaging information is integrated. The performance of tissue typing is compared for CCA applied to the whole MR spectra and to sets of features obtained from the spectra. Tests on simulated and in vivo MRSI data show that the new method is very accurate in terms of classification and segmentation. The results also show the advantage of combining spectroscopic and imaging data.  相似文献   
87.
The objectives of this study were to optimize the preparation of pristine brain tissue to obtain reference information, to optimize the conditions for introducing a fiber-optic probe to acquire Raman maps, and to transfer previous results obtained from human brain tumors to an animal model. Brain metastases of malignant melanomas were induced by injecting tumor cells into the carotid artery of mice. The procedure mimicked hematogenous tumor spread in one brain hemisphere while the other hemisphere remained tumor free. Three series of sections were prepared consecutively from whole mouse brains: dried, thin sections for FTIR imaging, hematoxylin and eosin-stained thin sections for histopathological assessment, and pristine, 2-mm thick sections for Raman mapping. FTIR images were recorded using a spectrometer with a multi-channel detector. Raman maps were collected serially using a spectrometer coupled to a fiber-optic probe. The FTIR images and the Raman maps were segmented by cluster analysis. The color-coded cluster memberships coincided well with the morphology of mouse brains in stained tissue sections. More details in less time were resolved in FTIR images with a nominal resolution of 25 microm than in Raman maps collected with a laser focus 60 microm in diameter. The spectral contributions of melanin in tumor cells were resonance enhanced in Raman spectra on excitation at 785 nm which enabled their sensitive detection in Raman maps. Possible reasons why metastatic cells of malignant melanomas were not identified in FTIR images are discussed.  相似文献   
88.
MASS TRANSPORT IN SOLID TUMORS (Ⅰ)──FLUID DYNAMICS   总被引:1,自引:0,他引:1  
A three-porous-medium model for transvascular exchange and extravascular transport of fluid and macromolecules in a spherical solid tumor is developed. The microvasculature, lymphatics, and tissue space are each treated as a porous medium with the flow of blood. lymph, and interstitial fluid obeying Darcy’s law and Starling’s assumption. In this part, the role of interstitial pressure and fluid convection are studited. The analytical soiutions are obtained for foe isolated tumor and the normal-tissue-surrounded tumor respectively. The calculated interstitial pressure profue are consistent with the experimental observation that the elevated interstitial pressure is a major barrier in the penetration of macromolecular drug into tumors. The factors which may reduce the interstitial pressure are analyzed in details.  相似文献   
89.
On the basis of an earlier model of chemical carcinogenesis, the antitumor activity of the mono-, bi- and poly-nuclear ferrocene derivatives ferricenium tri-iodide (1), ferricenium tetrachloroferrate (2), 1, 1′-diethylferricenium triiodide: (3), N-(ferrocenylmethyl)hexamethylenetetramine tetrafluoroborate (4), bis(ferrocenylmethyl)benzotriazolium tetrafluoroborate (5), bis(ferrocenyl-α-ethyl)benzotriazolium tetrafluoroborate (6) and bis(ferrocenylmethyl)-2-methylbenzimidazolium tetrafluoroborate (7), and the oligomer (—Fc—CH2—Fc—CH2—)7–8? (PF6)7–8 (8) was studied in vivo (Fc?C10H8Fe). The tumor models studied included MCH-11 (mouse sarcoma induced by methylcholantrene), P-815 (mouse mastocytoma of DBA/2 origin) and virus-induced Raucher leukemia (RLV). The cytotoxic effects of these preparations were examined against in vitro cultured normal murine cells (line L-929). The binuclear ferrocene derivatives 5, 6 and 7 inhibited the development of experimental tumors in mice. Ferricenium tri-iodide (1) was effective in Rauscher leukemia. Kinetic dependencies for most complexes had a two-phase character: the region of inhibition of tumorogenesis was followed by a region in which the complexes accelerated the development of this process. The link between the structure of compounds 1–8 and their antitumor effects is discussed.  相似文献   
90.
本文采用MTT法、碱性磷酸酶活性测定、矿化功能的测定以及油红O的染色和定量测定等手段研究了Gd3+对原代培养的小鼠骨髓基质细胞成骨分化和成脂分化的影响。研究结果表明,浓度为1×10-10和1×10-8 mol.L-1的Gd3+对小鼠骨髓基质细胞的增殖没有影响,其他测试浓度下的Gd3+则抑制小鼠骨髓基质细胞的增殖。当Gd3+与小鼠骨髓基质细胞作用7 d时,其对小鼠骨髓基质细胞成骨分化的影响与作用浓度有关,当Gd3+与小鼠骨髓基质细胞作用14 d时,在全部测试浓度范围内,抑制小鼠骨髓基质细胞成骨分化。除1×10-8和1×10-5 mol.L-1外,其他测试浓度下的Gd3+促进小鼠骨髓基质细胞的矿化功能。当Gd3+与小鼠骨髓基质细胞作用10 d时,其抑制小鼠骨髓基质细胞的成脂分化,当Gd3+与小鼠骨髓基质细胞作用16 d时,除1×10-9mol.L-1外,其他浓度的Gd3+也抑制小鼠骨髓基质细胞的成脂分化。实验结果提示,Gd3+可能通过促进骨髓基质细胞的成骨分化、抑制其成脂分化途径起到对骨的保护作用。Gd3+对原代培养的小鼠骨髓基质细胞成骨分化和成脂分化的影响与作用浓度和时间有关,而且,它们是影响Gd3+对骨是损伤还是保护作用转变的关键因素。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号