首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   69篇
  免费   19篇
化学   87篇
物理学   1篇
  2023年   1篇
  2022年   7篇
  2021年   13篇
  2020年   13篇
  2019年   12篇
  2018年   8篇
  2017年   5篇
  2016年   22篇
  2015年   1篇
  2014年   3篇
  2012年   1篇
  2007年   1篇
  2004年   1篇
排序方式: 共有88条查询结果,搜索用时 15 毫秒
81.
Guanine-rich sequences of DNA are known to readily fold into tetra-stranded helical structures known as G-quadruplexes (G4). Due to their biological relevance, G4s are potential anticancer drug targets and therefore there is significant interest in molecules with high affinity for these structures. Most G4 binders are polyaromatic planar compounds which π–π stack on the G4′s guanine tetrad. However, many of these compounds are not very selective since they can also intercalate into duplex DNA. Herein we report a new class of binder based on an octahedral cobalt(III) complex that binds to G4 via a different mode involving hydrogen bonding, electrostatic interactions and π–π stacking. We show that this new compound binds selectivity to G4 over duplex DNA (particularly to the G-rich sequence of the c-myc promoter). This new octahedral complex also has the ability to template the formation of G4 DNA from the unfolded sequence. Finally, we show that upon binding to G4, the complex prevents helicase Pif1-p from unfolding the c-myc G4 structure.  相似文献   
82.
Cyclic naphthalene diimides (cNDIs), with a ferrocene moiety (cFNDs) and different linker lengths between the ferrocene and cNDI moieties, were designed and synthesized as redox-active, tetraplex-DNA ligands. Intramolecular stacking was observed between ferrocene and the NDI planes, which could affect the binding properties for G-quadruplexes. Interestingly, the circular dichroism spectrum of one of these compounds clearly shows new Cotton effects around 320–380 and 240 nm, which can be considered a direct evidence of intramolecular stacking of ferrocene and the NDI. Regarding recognition of hybrid G-quadruplexes, the less rigid structures (longer linkers) show higher binding affinity (106 m −1 order of magnitude). All new compounds show higher selectivity for G4 during electrochemical detection than noncyclic FND derivatives, which further identifies the redox-active potentiality of the cFNDs. Two of the three compounds tested even show preferential inhibition of cell growth in cancer cells over normal cells in a low concentration range, highlighting the potential for bioapplications of these cFNDs.  相似文献   
83.
A DNA G-quadruplex adopting a (3+1) hybrid structure was modified in two adjacent syn positions of the antiparallel strand with anti-favoring 2′-deoxy-2′-fluoro-riboguanosine (FrG) analogues. The two substitutions promoted a structural rearrangement to a topology with the 5′-terminal G residue located in the central tetrad and the two modified residues linked by a V-shaped zero-nucleotide loop. Strikingly, whereas a sugar pucker in the preferred north domain is found for both modified nucleotides, the FrG analogue preceding the V-loop is forced to adopt the unfavored syn conformation in the new quadruplex fold. Apparently, a preferred C3′-endo sugar pucker within the V-loop architecture outweighs the propensity of the FrG analogue to adopt an anti glycosidic conformation. Refolding into a V-loop topology is likewise observed for a sequence modified at corresponding positions with two riboguanosine substitutions. In contrast, 2′-F-arabinoguanosine analogues with their favored south-east sugar conformation do not support formation of the V-loop topology. Examination of known G-quadruplexes with a V-shaped loop highlights the critical role of the sugar conformation for this distinct structural motif.  相似文献   
84.
This work provides new insights from our team regarding advances in targeting canonical and non-canonical nucleic acid structures. This modality of medical treatment is used as a form of molecular medicine specifically against the growth of cancer cells. Nevertheless, because of increasing concerns about bacterial antibiotic resistance, this medical strategy is also being explored in this field. Up to three strategies for the use of DNA as target have been studied in our research lines during the last few years: (1) the intercalation of phenanthroline derivatives with duplex DNA; (2) the interaction of metal complexes containing phenanthroline with G-quadruplexes; and (3) the activity of Mo polyoxometalates and other Mo-oxo species as artificial phosphoesterases to catalyze the hydrolysis of phosphoester bonds in DNA. We demonstrate some promising computational results concerning the favorable interaction of these small molecules with DNA that could correspond to cytotoxic effects against tumoral cells and microorganisms. Therefore, our results open the door for the pharmaceutical and medical applications of the compounds we propose.  相似文献   
85.
Organometallic molecules offer some of the most promising scaffolds for interaction with G-quadruplex nucleic acids. We report the efficient synthesis of a family of organoplatinum(II) complexes, featuring a 2-([2,2′-bipyridin]-6-yl)phenyl tridentate (NNC) ligand, that incorporates peripheral side-chains aiming at enhancing and diversifying its interaction capabilities. These include a di-isopropyl carbamoyl amide, a morpholine ethylenamide, two enantiomeric proline imides and an oxazole. The binding affinities of the Pt-complexes were evaluated via UV-vis and fluorescence titrations, against 5 topologically-distinct DNA structures, including c-myc G-quadruplex, two telomeric (22AG) G-quadruplexes, a duplex (ds26) and a single-stranded (polyT) DNA. All compounds exhibited binding selectivity in favour of c-myc, with association constants (Ka) in the range of 2–5×105 M−1, lower affinity for both folds of 22AG and for ds26 and negligible affinity for polyT. Remarkable emission enhancements (up to 200-fold) upon addition of excess DNA were demonstrated by a subset of the compounds with c-myc, providing a basis for optical selectivity, since optical response to all other tested DNAs was low. A c-myc DNA-melting experiment showed significant stabilizing abilities for all compounds, with the most potent binder, the morpholine-Pt-complex, exhibiting a ΔTm>30 °C, at 1 : 5 DNA-to-ligand molar ratio. The same study implied contributions of the diverse side-chains to helix stabilization. To gain direct evidence of the nature of the interactions, mixtures of c-myc with the four most promising compounds were studied via UV Resonance Raman (UVRR) spectroscopy, which revealed end-stacking binding mode, combined with interactions of side-chains with loop nucleobase residues. Docking simulations were conducted to provide insights into the binding modes for the same four Pt-compounds, suggesting that the binding preference for two alternative orientations of the c-myc G-quadruplex thymine ‘cap’ (‘open’ vs. ‘closed’), as well as the relative contributions to affinity from end-stacking and H-bonding, are highly dependent on the nature of the interacting Pt-complex side-chain.  相似文献   
86.
Nucleic acids with G4 elements play a role in the formation of aggregates involved in intracellular phase transitions. Our previous studies suggest that different forms of DNA could act as an accelerating template in Cu/Zn superoxide dismutase (SOD1) aggregation. Here, we examined the regulation of formation and cytotoxicity of the SOD1 aggregates by single-stranded 12-mer deoxynucleotide oligomers (dN)12 (N = A, T, G, C; ssDNAs) under acidic conditions. The ssDNAs can be divided into two groups based on their roles in SOD1 binding, exposure of hydrophobic clusters in SOD1, accelerated formation, morphology and cytotoxicity of SOD1 aggregates. G-quadruplexes convert SOD1 into fibrillar aggregates as a template, a fact which was observed for the first time in the nucleic acid regulation of protein aggregation. Moreover, the fibrillar or fibril-like SOD1 species with a G-quadruplex provided by (dG)12 were less toxic than the amorphous species with (dN)12 (N = A, T). This study not only indicates that both morphology and cytotoxicity of protein aggregates can be regulated by the protein-bound DNAs, but also help us understand roles of nucleic aid G-quadruplexes in the formation of aggregates and membraneless organelles involved in intracellular phase transitions.  相似文献   
87.
Four dinuclear terpyridineplatinum(II) (Pt–terpy) complexes were investigated for interactions with G‐quadruplex DNA (QDNA) and duplex DNA (dsDNA) by synchrotron radiation circular dichroism (SRCD), fluorescent intercalator displacement (FID) assays and fluorescence resonance energy transfer (FRET) melting studies. Additionally, computational docking studies were undertaken to provide insight into potential binding modes for these complexes. The complexes demonstrated the ability to increase the melting temperature of various QDNA motifs by up to 17 °C and maintain this in up to a 600‐fold excess of dsDNA. This study demonstrates that dinuclear Pt–terpy complexes stabilise QDNA and have a high degree of selectivity for QDNA over dsDNA.  相似文献   
88.
We reported a novel strategy for investigating small molecule binding to G‐quadruplexes (GQs). A newly synthesized dinuclear platinum(II) complex (Pt2L) containing a nitroxide radical was shown to selectively bind a GQ‐forming sequence derived from human telomere (hTel). Using the nitroxide moiety as a spin label, electron paramagnetic resonance (EPR) spectroscopy was carried out to investigate binding between Pt2L and hTel GQ. Measurements indicated that two molecules of Pt2L bind with one molecule of hTel GQ. The inter‐spin distance measured between the two bound Pt2L, together with molecular docking analyses, revealed that Pt2L predominately binds to the neighboring narrow and wide grooves of the G‐tetrads as hTel adopts the antiparallel conformation. The design and synthesis of nitroxide tagged GQ binders, and the use of spin‐labeling/EPR to investigate their interactions with GQs, will aid the development of small molecules for manipulating GQs involved in crucial biological processes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号