首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   274篇
  免费   13篇
  国内免费   30篇
化学   300篇
力学   1篇
物理学   16篇
  2024年   1篇
  2023年   6篇
  2022年   9篇
  2021年   2篇
  2020年   13篇
  2019年   4篇
  2018年   4篇
  2017年   7篇
  2016年   13篇
  2015年   16篇
  2014年   15篇
  2013年   18篇
  2012年   13篇
  2011年   30篇
  2010年   10篇
  2009年   37篇
  2008年   18篇
  2007年   21篇
  2006年   17篇
  2005年   13篇
  2004年   10篇
  2003年   7篇
  2002年   3篇
  2001年   3篇
  2000年   2篇
  1999年   4篇
  1998年   1篇
  1997年   7篇
  1996年   1篇
  1995年   2篇
  1994年   4篇
  1993年   1篇
  1992年   4篇
  1990年   1篇
排序方式: 共有317条查询结果,搜索用时 15 毫秒
101.
A highly efficient one‐pot transformation of readily accessible furans into 4‐hydroxy‐2‐cyclopentenones in H2O, using singlet oxygen as oxidant, has been developed.  相似文献   
102.
An efficient, one-pot, solvent-free, regioselective synthesis of functionalized [1,6]-naphthyridines was explored by a heterogeneous catalyst via a three-component multicomponent reaction (MCR). KF/basic alumina–catalyzed double heteroannulation of aryl alkyl ketones, malononitrile, and alkyl amines generates the compounds with high appendage diversity combinatorially via Knoevenagel condensation followed by Michael addition and cyclization pathway. Short reaction time, high yield, simple reaction technique, and recoverability and reusability of the catalyst without compromising the yield and purity of the compounds are the salient features of this methodology. Additionally, these compounds exhibit promising photophysical properties.  相似文献   
103.
利用水合肼还原十八胺(ODA)接枝的氧化石墨烯(GO),得到了十八胺功能化石墨烯(ODA-G),将ODAG与聚苯胺(PANI)通过溶液共混法,制备了功能化石墨烯和聚苯胺纳米复合材料(ODA-G/PANI).采用傅里叶变换红外(FTIR)光谱、X射线衍射(XRD)、热重分析(TGA)、拉曼(Raman)光谱及透射电镜(TEM),对复合材料的结构和形貌进行了表征;利用循环伏安、恒流充放电及交流阻抗谱等,对复合材料的电化学性能进行了测试.结果显示,少量ODA-G的引入为PANI的电化学氧化还原反应提供了更多的电子通道和活性位置,有利于提高PANI的赝电容.在电流密度1.0 A·g-1下,2%(w)ODA-G/PANI的比电容达到787 F·g-1,而相应的PANI仅有426 F·g-1.此外,ODA-G/PANI的循环稳定性也远高于纯PANI.  相似文献   
104.
A novel free radical reaction combined with liquid chromatography electrospray ionization tandem mass spectrometry (FRR-LC–PDA-ESI/APCI-MS/MS) screening method was developed for the detection and identification of radical-scavenging natural antioxidants. Functionalized graphene was prepared by chemical method for loading free radicals (superoxide radical, peroxyl radical and PAHs free radical). Separation was performed with and without a preliminary exposure of the sample to specific free radicals on the functionalized graphene, which can facilitate reaction kinetics (charge transfers) between free radicals and potential antioxidants. The difference in chromatographic peak areas is used to identify potential antioxidants. The structure of the antioxidants in one sample (Swertia chirayita) is identified using MS/MS and comparison with standards. Thirteen compounds were found to possess potential antioxidant activity, and their free radical-scavenging capacities were investigated. The thirteen compounds were identified as 1,3,5-trihydroxyxanthone-8-O-β-d-glucopyranoside (PD1), norswertianin (PD2), 1,3,5,8-tetrahydroxyxanthone (PD3), 3, 3′, 4′, 5, 8-penta hydroxyflavone-6-β-d-glucopyranosiduronic acid-6′-pentopyranose-7-O-glucopyranoside (PD4), 1,5,8-trihydroxy-3-methoxyxanthone (PD5), swertiamarin (PS1), 2-C-β-d-glucopyranosyl-1,3,7-trihydroxylxanthone (PS2), 1,3,7-trihydroxylxanthone-8-O-β-d-glucopyranoside (PL1), 1,3,8-trihydroxyl xanthone-5-O-β-d-glucopyranoside (PL2), 1,3,7-trihydroxy-8-methoxyxanthone (PL3), 1,2,3-trihydroxy-7,8-dimethoxyxanthone (PL4), 1,8-dihydroxy-2,6-dimethoxy xanthone (PL5) and 1,3,5,8-tetramethoxydecussatin (PL6). The reactivity and SC50 values of those compounds were investigated, respectively. PD4 showed the strongest capability for scavenging PAHs free radical; PL4 showed prominent scavenging capacities in the lipid peroxidation processes; it was found that all components in S. chirayita exhibited weak reactivity in the superoxide radical scavenging capacity. The use of the free radical reaction screening method based on LC–PDA-ESI/APCI-MS/MS would provide a new approach for rapid detection and identification of radical-scavenging natural antioxidants from complex matrices.  相似文献   
105.
通过Williamson反应,在羟基化氧化石墨烯(GO-OH)表面修饰1-(6-溴己基)-3-甲基咪唑溴化物(6BrIm),合成了1-(6-溴己基)-3-甲基咪唑溴化物功能化氧化石墨烯(6BrIm-GO)。将6BrIm-GO引入高支化梳型聚芳醚砜(ImHBPES-8)基体中,经物理共混、浇铸成膜及离子交换,制备了一系列阴离子交换纳米复合膜(ImHBPES-8/x-6BrIm-GO). 6BrIm-GO的引入,既作为一种功能纳米填料,又提供了更多OH-离子传输位点,在提高ImHBPES-8膜机械强度的同时保证了离子电导率。研究了引入6BrIm-GO的含量对ImHBPES-8膜结构与性能的影响。研究结果表明,引入6BrIm-GO后,ImHBPES-8膜整体性能均得到改善。当6BrIm-GO含量为0. 75%时,ImHBPES-8/0. 75%-6BrIm-GO复合膜的综合性能最佳,其拉伸强度为18. 32 MPa,与ImHBPES-8膜相比,提高了22. 9%; 80℃下OH-离子电导率最高达79. 8 mS/cm。将ImHBPES-8/0. 75%-6BrIm-GO...  相似文献   
106.
A novel and highly sensitive electrochemical immunosensor was developed for the detection of protein biomarker tumor necrosis factor‐alpha (TNF‐α) based on immobilization of TNF‐α‐antibody (anti‐TNF‐α) onto robust nanocomposite containing gold nanoparticles (AuNP), multiwalled carbon nanotubes (MWCNTs) and ionic liquid (1‐buthyl‐3‐methylimidazolium bis (trifluoromethyl sulfonyl)imide). Functionalized MWCNT‐gold nanoparticle was produced by one‐step synthesis based on the direct redox reaction. The electrochemical properties of nanocomposite were characterized by electrochemical impedance spectroscopy and cyclic voltammetry. The anti‐TNF‐α was immobilized or entrapped in the nanocomposite and used in a sandwich type complex immunoassay with anti‐TNF‐α labeled with horseradish peroxidase as secondary antibody. Under optimum conditions, the immunosensor could detect TNF‐α in a linear range from 6.0 to 100 pg mL?1 with a low detection limit of 2.0 pg mL?1. The simple fabrication method, high sensitivity, good reproducibility, stability, as well as acceptable accuracy for TNF‐α detection in human serum samples are the main advantages of this immunosensor, which might have broad applications in protein diagnostics and bioassay.  相似文献   
107.
A new approach for decreasing the detection limit for a copper(II) ion-selective electrode (ISE) is presented. The ISE is designed using salicylidine-functionalized polysiloxane in carbon paste. This work describes the attempts to develop the electrode and measurements of its characteristics. The new type of renewable three-dimensional chemically modified electrode could be used in a pH range of 2.3–5.4, and its detection limit is 2.7 × 10−8 mol L−1 (1.2 μg L−1). This sensor exhibits a good Nernstian slope of 29.4 ± 0.5 mV/decade in a wide linear concentration range of 2.3 × 10−7 to 1.0 × 10−3 mol L−1 of Cu(II). It has a short response time (8 s) and noticeably high selectivity over other Cu(II) selective electrodes. Finally, it was satisfactorily used as an indicator electrode in complexometric titration with EDTA and determination of copper(II) in miscellaneous samples such as urine and various water samples.  相似文献   
108.
The molecular encapsulation of functionalized fullerenes (substituted fulleropyrrolidines) with water-soluble calixarenes was studied by photoluminescence and quantum-chemical methods. The results show that both the thiacalix[4]arene-tetrasulfonate and calix[6]arene-hexasulfonate are able to overcome the natural water-repulsive character of fullerenes. However, the functionalization of calixarenes and fullerenes induces significant changes in the molecular encapsulation processes, and the obtained thermodynamic behavior of the complex formation highlights the importance of the entropy. Our results can contribute to the development of the synthesis and design of functionalized calixarenes supporting their application in pharmaceutical and food chemistry.  相似文献   
109.
Core-shell and homogeneous distributions of functionalized cerium oxide nanoparticles within spray-dried mesostructured silica spheres are achieved by modification of synthesis parameters such as the templating agent and nanoparticle capping functions. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.
Clément Sanchez (Corresponding author)Email:
  相似文献   
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号