首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   554篇
  免费   21篇
  国内免费   68篇
化学   576篇
晶体学   7篇
力学   7篇
数学   4篇
物理学   49篇
  2023年   9篇
  2022年   25篇
  2021年   16篇
  2020年   15篇
  2019年   13篇
  2018年   20篇
  2017年   18篇
  2016年   17篇
  2015年   10篇
  2014年   13篇
  2013年   48篇
  2012年   13篇
  2011年   30篇
  2010年   26篇
  2009年   43篇
  2008年   18篇
  2007年   30篇
  2006年   35篇
  2005年   32篇
  2004年   38篇
  2003年   24篇
  2002年   19篇
  2001年   17篇
  2000年   19篇
  1999年   18篇
  1998年   13篇
  1997年   9篇
  1996年   6篇
  1995年   14篇
  1994年   6篇
  1993年   8篇
  1992年   4篇
  1991年   2篇
  1990年   3篇
  1988年   3篇
  1986年   2篇
  1985年   2篇
  1984年   1篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
排序方式: 共有643条查询结果,搜索用时 15 毫秒
41.
Removal of a troublesome textile dye, Direct Blue 71 (DB71) from water by a food waste compost was assessed in the current study. Since compost dye sorption is a multi-factor process influenced by mass, pH, concentration, temperature, contact time, and salinity, the cumulative influence of all parameters on DB71 removal was examined following an optimal multilevel multifactor experimental design. The process had to be presented using both linear and interaction terms, according to the variables analysis: Dye sorption = –0.050Mass + 0.122Conc–0.114pH + 0.132Time – 0.074Temp + 0.056Sal + 0.103Mass × Conc + 0.226 Mass × pH – 0.257Mass × Time – 0.112Mass × Temp – 0.041Mass × Sal + 0.008Conc × pH + 0.100Conc × Time + 0.089Conc × Temp + 0.167Conc × Sal – 0.245pH × Time – 0.231pH × Temp – 0.123pH × Sal + 0.358Tim × Temp + 0.355Tim × Sal – 0.045Temp × Sal (R2 = 0.9241)Salinity and pH were positively correlated with concentration, and contact time with temperature and salinity, to get better dye uptake. The optimal conditions for dye removal were the following: solid:liquid ratio 1:375, pH 3.0, initial dye concentration 400 mg L?1, contact time 240 min, salinity 0.6 M NaCl, temperature 50 °C. At the optimum combination of factors, equilibrium sorption isotherm and sorption kinetics were studied. Kinetic analysis indicated high sorption rate 4.0 mg g?1 min?1 while 28% of maximum capacity was reached within the first 10 min of interaction. Sorption isotherm has L2-shape which reflected surface saturation at high solute concentration with low competition with solvent molecules, with a maximum sorption capacity of 95.4 mg g?1. In column experiments performed at bed depth 5.1–12.8 cm, flow rate 1.0–2.0 mL min?1 and influent concentration 10–20 mg L?1, sorption capacity was 19.6 mg g?1, which represents 21% of the maximum capacity at equilibrium conditions. IR analysis of dye-loaded-compost confirmed the contribution of hydrophobic-hydrophobic forces in the sorption process.  相似文献   
42.
The effectiveness of Congo red (CR) adsorption from aqueous solutions onto MgAl-layered double hydroxide (MgAl-LDH) nanosorbents was examined in this study. MgAl-LDH was synthesized using the hydrothermal method, and physicochemical characterization was performed via powdered X-ray diffraction, high-resolution transmission electron microscopy, Fourier transform infrared analysis, and zeta potential measurements. For optimum adsorption of CR onto the synthesized MgAl-LDH nanosorbent, the adsorption process was employed in batch experiments. Adsorption parameters, such as the adsorbent dosage, solution pH, contact time, and initial adsorbate concentration, vary with the adsorption kinetics and isotherm mechanism. The results of the batch experiments indicated rapid adsorption of CR dye from aqueous solutions onto MgAl-LDH during the first 30 min until equilibrium was achieved at 180 min with a dye concentration of 50 mg/100 mL and MgAl-LDH adsorbent dosage of 0.05 g. The experimental adsorption data fit adequately with the monolayer coverage under the Langmuir isotherm model (R2 = 0.9792), and showed the best fit with the pseudo-second-order kinetic model (R2 = 0.996). The change in zeta potential confirmed the effective adsorption interaction between the positively charged MgAl-LDH and the negatively charged CR molecules with electrostatic interactions. This work is distinguished by the successful hydrothermal preparation of MgAl-LDH in the form of homogenous nanoscale particles (~100 nm). The prepared MgAl-LDH showed a high adsorption capacity toward anionic CR dye with a maximum adsorption capacity of 769.23 mg/g. This capacity is higher than those reported for other adsorbents in previous research.  相似文献   
43.
In this work, we study the elimination of three bivalent metal ions (Cd2+, Cu2+, and Pb2+) by adsorption onto natural illitic clay (AM) collected from Marrakech region in Morocco. The characterization of the adsorbent was carried out by X-ray fluorescence, Fourier transform infrared spectroscopy and X-ray diffraction. The influence of physicochemical parameters on the clay adsorption capacity for ions Cd2+, Cu2+, and Pb2+, namely the adsorbent dose, the contact time, the initial pH imposed on the aqueous solution, the initial concentration of the metal solution and the temperature, was studied. The adsorption process is evaluated by different kinetic models such as the pseudo-first-order, pseudo-second-order, and Elovich. The adsorption mechanism was determined by the use of adsorption isotherms such as Langmuir, Freundlich, and Temkin models. Experiments have shown that heavy metals adsorption kinetics onto clay follows the same order, the pseudo-second order. The isotherms of adsorption of metal cations by AM clay are satisfactorily described by the Langmuir model and the maximum adsorption capacities obtained from the natural clay, using the Langmuir isotherm model equation, are 5.25, 13.41, and 15.90 mg/g, respectively for Cd(II), Cu(II), and Pb(II) ions. Adsorption of heavy metals on clay is a spontaneous and endothermic process characterized by a disorder of the medium. The values of ΔH are greater than 40 kJ/mol, which means that the interactions between clay and heavy metals are chemical in nature.  相似文献   
44.
Sludge water (SW) arising from the dewatering of anaerobic digested sludge causes high back loads of ammonium, leading to high stress (inhibition of the activity of microorganisms by an oversupply of nitrogen compounds (substrate inhibition)) for wastewater treatment plants (WWTP). On the other hand, ammonium is a valuable resource to substitute ammonia from the energy intensive Haber-Bosch process for fertilizer production. Within this work, it was investigated to what extent and under which conditions Carpathian clinoptilolite powder (CCP 20) can be used to remove ammonium from SW and to recover it. Two different SW, originating from municipal WWTPs were investigated (SW1: c0 = 967 mg/L NH4-N, municipal wastewater; SW2: c0 = 718–927 mg/L NH4-N, large industrial wastewater share). The highest loading was achieved at 307 K with 16.1 mg/g (SW1) and 15.3 mg/g (SW2) at 295 K. Kinetic studies with different specific dosages (0.05 gCLI/mgNH4-N), temperatures (283–307 K) and pre-loaded CCP 20 (0–11.4 mg/g) were conducted. At a higher temperature a higher load was achieved. Already after 30 min contact time, regardless of the sludge water, a high load up to 7.15 mg/g at 307 K was reached, achieving equilibrium after 120 min. Pre-loaded sorbent could be further loaded with ammonium when it was recontacted with the SW.  相似文献   
45.
利用磷酸活化法制备油茶果壳活性炭,并将其作为吸附剂用于去除水溶液中的Cr(Ⅵ),同时探讨了不同参数(Cr(Ⅵ)的初始浓度、吸附剂的用量、pH、温度等)对油茶果壳活性炭吸附Cr(Ⅵ)的影响。结果表明:当温度为293 K,Cr(Ⅵ)初始浓度为250 mg/L,pH为2.0时,Cr(Ⅵ)的最大吸附量可达165.0 mg/L。根据吸附动力学原理,发现其吸附过程遵循拟二级动力学模型。Cr(Ⅵ)的去除程度随Cr(Ⅵ)初始浓度的升高而增加,且其平衡数据与Freundlich模型拟合良好。  相似文献   
46.
ZIF‐7, built as an assembly of ZnII centers and benzimidazolate ligands, shows prominent S‐shaped isotherms upon CO2 adsorption that can be attributed to sorbate‐induced gate‐opening phenomena involving a narrow‐to‐large pore phase transition. This peculiar sorption pattern can be captured via the formulation of thermodynamic isotherms, providing a direct enthalpic and entropic view of the gate‐opening process. Relying on such an approach, an energy barrier with preferential enthalpic nature for CO2 adsorption/desorption in the gate‐opening region could be unveiled. Moreover, the elastic energy involved during the gate‐opening process was revisited to 1.4–2.8 kJ mol?1 of solid in the temperature range 273–323 K, matching the value measured by isostatic compression of a ZIF‐7_lp sample filled with DMF and showing a dominant entropic contribution.  相似文献   
47.
《Arabian Journal of Chemistry》2020,13(11):8262-8270
The Zn0.3Al0.4O4.5 nanoparticles (ZnAlONPs) with size of 70–90 nm are used as an efficient photocatalyst for formaldehyde (HCHO) degradation and effective adsorbent for the removal of eriochrome black-T (EBT) dye from synthetic aqueous solution. Degradation of HCHO reactions were studied using TiO2 (homemade), TiO2 (P-25) and ZnAlONPs by irradiating under 18 W daylight lamp source for photocatalytic degradation. The HCHO degradation rate is about 67, 76 and 89% for TiO2 (homemade), TiO2 (P25) and ZnAlONPs during 2 h reaction, respectively at initial formaldehyde gas concentration of 20 ppm. Maximum adsorption capacity was optimized by changing the parameters such as pH, EBT concentration and adsorbent dosage. A  200 mg of ZnAlONPs are useable for quick removal of EBT (>95%). Langmuir isotherm model showed a maximum adsorption capacity of 90.90 mgg−1. The ZnAlONPs could be successfully reused upto 5th adsorption/desorption cycle for EBT dye removal from water samples.  相似文献   
48.
In this paper, we consider two different polyethylene filter plates coated with multi-walled carbon nanotubes (MWCNTs) and synthesized by surface molecularly imprinted technique, namely plate@MWCNTs@MIPs (PMIPs) and plate@MWCNTs@NIPs (PNIPs). They were used as effective adsorbents for selective adsorption and detection of prednisone (PS) in cosmetics. As a first assessment to investigate the performance of these adsorbents, the PS adsorption isotherms were analyzed using an advanced multilayer statistical physics model at three different temperatures ( 293, 303 and 313 K) and over a wide PS concentration range (0.09–1.5 mg/mL). The obtained analyzing results from the best fitting model showed that the PMIPs adsorbent displayed a high adsorption capacity (27.4 mg/g) due to the contribution of the number of PS molecules per site (nm) combined with the receptor sites density (Dm), which displayed a high recognition ability due to the adsorption energy. Modeling analysis process indicated that the PS molecules could be anchored on the PMIPs and PNIPs surfaces via a non-parallel orientation where the adsorption is a multi-molecular process. The calculated adsorption energies globally varied from 4.51 to 7.62 kJ/mol, confirming the physical nature of the adsorption process for the studied systems, which is beneficial in cosmetics. Finally, three thermodynamic potentials (entropy, internal energy and free enthalpy) were evaluated for a better understanding of the physico-chemical behavior of the adsorption process.  相似文献   
49.
The progresses of understanding of the surfactant adsorption at the hydrophilic solid-liquid interface from extensive experimental studies are reviewed here. In this respect the kinetic and equilibrium studies involves anionic, cationic, non-ionic and mixed surfactants at the solid surface from the solution. Kinetics and equilibrium adsorption of surfactants at the solid-liquid interface depend on the nature of surfactants and the nature of the solid surface. Studies have been reported on adsorption kinetics at the solid-liquid interface primarily on the adsorption of non-ionic surfactant on silica and limited studies on cationic surfactant on silica and anionic surfactant on cotton and cellulose. The typical isotherm of surfactants in general, can be subdivided into four regions. Four-regime isotherm was mainly observed for adsorption of ionic surfactant on oppositely charged solid surface and adsorption of non-ionic surfactant on silica surface. Region IV of the adsorption isotherm is commonly a plateau region above the CMC, it may also show a maximum above the CMC. Isotherms of four different regions are discussed in detail. Influences of different parameters such as molecular structure, temperature, salt concentration that are very important in surfactant adsorption are reviewed here. Atomic force microscopy study of different surfactants show the self-assembly and mechanism of adsorption at the solid-liquid interface. Adsorption behaviour and mechanism of different mixed surfactant systems such as anionic-cationic, anionic-non-ionic and cationic-non-ionic are reviewed. Mixture of surface-active materials can show synergistic interactions, which can be manifested as enhanced surface activity, spreading, foaming, detergency and many other phenomena.  相似文献   
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号