首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   33505篇
  免费   3367篇
  国内免费   2172篇
化学   19845篇
晶体学   235篇
力学   798篇
综合类   151篇
数学   3406篇
物理学   14609篇
  2024年   55篇
  2023年   255篇
  2022年   801篇
  2021年   794篇
  2020年   998篇
  2019年   996篇
  2018年   862篇
  2017年   992篇
  2016年   1485篇
  2015年   1442篇
  2014年   1656篇
  2013年   2701篇
  2012年   1912篇
  2011年   2185篇
  2010年   1793篇
  2009年   2350篇
  2008年   2285篇
  2007年   2346篇
  2006年   2137篇
  2005年   1698篇
  2004年   1489篇
  2003年   1265篇
  2002年   1002篇
  2001年   785篇
  2000年   739篇
  1999年   654篇
  1998年   567篇
  1997年   540篇
  1996年   414篇
  1995年   330篇
  1994年   258篇
  1993年   215篇
  1992年   182篇
  1991年   140篇
  1990年   96篇
  1989年   87篇
  1988年   135篇
  1987年   67篇
  1986年   45篇
  1985年   43篇
  1984年   43篇
  1983年   14篇
  1982年   37篇
  1981年   43篇
  1980年   25篇
  1978年   13篇
  1976年   11篇
  1973年   12篇
  1972年   9篇
  1971年   8篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
71.
Spider silk is one of the hottest biomaterials researched currently, due to its excellent mechanical properties. This work reports a novel humidity sensing platform based on a spider silk-modified quartz tuning fork (SSM-QTF). Since spider silk is a kind of natural moisture-sensitive material, it does not demand additional sensitization. Quartz-enhanced conductance spectroscopy (QECS) was combined with the SSM-QTF to access humidity sensing sensitively. The results indicate that the resonance frequency of the SSM-QTF decreased monotonously with the ambient humidity. The detection sensitivity of the proposed SSM-QTF sensor was 12.7 ppm at 1 min. The SSM-QTF sensor showed good linearity of ~0.99. Using this sensor, we successfully measured the humidity of disposable medical masks for different periods of wearing time. The results showed that even a 20 min wearing time can lead to a >70% humidity in the mask enclosed space. It is suggested that a disposable medical mask should be changed <2 h.  相似文献   
72.
Unsymmetrical bisacridines (UAs) represent a novel class of anticancer agents previously synthesized by our group. Our recent studies have demonstrated their high antitumor potential against multiple cancer cell lines and human tumor xenografts in nude mice. At the cellular level, these compounds affected 3D cancer spheroid growth and their cellular uptake was selectively modulated by quantum dots. UAs were shown to undergo metabolic transformations in vitro and in tumor cells. However, the physicochemical properties of UAs, which could possibly affect their interactions with molecular targets, remain unknown. Therefore, we selected four highly active UAs for the assessment of physicochemical parameters under various pH conditions. We determined the compounds’ pKa dissociation constants as well as their potential to self-associate. Both parameters were determined by detailed and complex chemometric analysis of UV-Vis spectra supported by nuclear magnetic resonance (NMR) spectroscopy. The obtained results indicate that general molecular properties of UAs in aqueous media, including their protonation state, self-association ratio, and solubility, are strongly pH-dependent, particularly in the physiological pH range of 6 to 8. In conclusion, we describe the detailed physicochemical characteristics of UAs, which might contribute to their selectivity towards tumour cells as opposed to their effect on normal cells.  相似文献   
73.
Rice blast is a serious threat to rice yield. Breeding disease-resistant varieties is one of the most economical and effective ways to prevent damage from rice blast. The traditional identification of resistant rice seeds has some shortcoming, such as long possession time, high cost and complex operation. The purpose of this study was to develop an optimal prediction model for determining resistant rice seeds using Ranman spectroscopy. First, the support vector machine (SVM), BP neural network (BP) and probabilistic neural network (PNN) models were initially established on the original spectral data. Second, due to the recognition accuracy of the Raw-SVM model, the running time was fast. The support vector machine model was selected for optimization, and four improved support vector machine models (ABC-SVM (artificial bee colony algorithm, ABC), IABC-SVM (improving the artificial bee colony algorithm, IABC), GSA-SVM (gravity search algorithm, GSA) and GWO-SVM (gray wolf algorithm, GWO)) were used to identify resistant rice seeds. The difference in modeling accuracy and running time between the improved support vector machine model established in feature wavelengths and full wavelengths (200–3202 cm−1) was compared. Finally, five spectral preproccessing algorithms, Savitzky–Golay 1-Der (SGD), Savitzky–Golay Smoothing (SGS), baseline (Base), multivariate scatter correction (MSC) and standard normal variable (SNV), were used to preprocess the original spectra. The random forest algorithm (RF) was used to extract the characteristic wavelengths. After different spectral preproccessing algorithms and the RF feature extraction, the improved support vector machine models were established. The results show that the recognition accuracy of the optimal IABC-SVM model based on the original data was 71%. Among the five spectral preproccessing algorithms, the SNV algorithm’s accuracy was the best. The accuracy of the test set in the IABC-SVM model was 100%, and the running time was 13 s. After SNV algorithms and the RF feature extraction, the classification accuracy of the IABC-SVM model did not decrease, and the running time was shortened to 9 s. This demonstrates the feasibility and effectiveness of IABC in SVM parameter optimization, with higher prediction accuracy and better stability. Therefore, the improved support vector machine model based on Ranman spectroscopy can be applied to the fast and non-destructive identification of resistant rice seeds.  相似文献   
74.
In this paper, the photochemistry of glyoxal–hydroxylamine (Gly–HA) complexes is studied using FTIR matrix isolation spectroscopy and ab initio calculations. The irradiation of the Gly–HA complexes with the filtered output of a mercury lamp (λ > 370 nm) leads to their photoconversion to hydroxyketene–hydroxylamine complexes and the formation of hydroxy(hydroxyamino)acetaldehyde with a hemiaminal structure. The first product is the result of a double hydrogen exchange reaction between the aldehyde group of Gly and the amino or hydroxyl group of HA. The second product is formed as a result of the addition of the nitrogen atom of HA to the carbon atom of one aldehyde group of Gly, followed by the migration of the hydrogen atom from the amino group of hydroxylamine to the oxygen atom of the carbonyl group of glyoxal. The identification of the products is confirmed by deuterium substitution and by MP2 calculations of the structures and vibrational spectra of the identified species.  相似文献   
75.
In Phys. Lett. A 313 (2003) 343 we have found that the self-reciprocal Hankel transformation (HT) is embodied in quantum mechanics by a transform between two entangled state representations of continuum variables. In this work we study Hankel transforms and properties of Bessel function via entangled state representations' transformation in quantum mechanics.  相似文献   
76.
At this time, the development of advanced elastic dielectric materials for use in organic devices, particularly in organic field-effect transistors, is of considerable interest to the scientific community. In the present work, flexible poly(dimethylsiloxane) (PDMS) specimens cross-linked by means of ZnCl2-bipyridine coordination with an addition of 0.001 wt. %, 0.0025 wt. %, 0.005 wt. %, 0.04 wt. %, 0.2 wt. %, and 0.4 wt. % of gold nanoparticles (AuNPs) were prepared in order to understand the effect of AuNPs on the electrical properties of the composite materials formed. The broadband dielectric spectroscopy measurements revealed one order of magnitude decrease in loss tangent, compared to the coordinated system, upon an introduction of 0.001 wt. % of AuNPs into the polymeric matrix. An introduction of AuNPs causes damping of conductivity within the low-temperature range investigated. These effects can be explained as a result of trapping the Cl counter ions by the nanoparticles. The study has shown that even a very low concentration of AuNPs (0.001 wt. %) still brings about effective trapping of Cl counter anions, therefore improving the dielectric properties of the investigated systems. The modification proposed reveals new perspectives for using AuNPs in polymers cross-linked by metal-ligand coordination systems.  相似文献   
77.
Previously, different Hydrangea macrophylla ssp. serrata cultivars were investigated by untargeted LC-MS analysis. From this, a list of tentatively identified and unknown compounds that differ significantly between these cultivars was obtained. Due to the lack of reference compounds, especially for dihydro-isocoumarins, we aimed to isolate and structurally characterise these compounds from the cultivar ‘Yae-no-amacha’ using NMR and LC-MS methods. For purification and isolation, counter-current chromatography was used in combination with reversed-phase preparative HPLC as an orthogonal and enhanced purification workflow. Thirteen dihydro-isocoumarins in combination with other metabolites could be isolated and structurally identified. Particularly interesting was the clarification of dihydrostilbenoid glycosides, which were described for the first time in H. macrophylla ssp. serrata. These results will help us in further studies on the biological interpretation of our data.  相似文献   
78.
Wearing surgical face masks is among the measures taken to mitigate coronavirus disease (COVID-19) transmission and deaths. Lately, concern was expressed about the possibility that gases from respiration could build up in the mask over time, causing medical issues related to the respiratory system. In this research study, the carbon dioxide concentration and ethylene in the breathing zone were measured before and immediately after wearing surgical face masks using the photoacoustic spectroscopy method. From the determinations of this study, the C2H4 was established to be increased by 1.5% after one hour of wearing the surgical face mask, while CO2 was established to be at a higher concentration of 1.2% after one hour of wearing the surgical face mask, when the values were correlated with the baseline (control).  相似文献   
79.
Methylfurans are methylated aromatic heterocyclic volatile organic compounds and primary or secondary pollutants in the atmosphere due to their capability to form secondary organic aerosols in presence of atmospheric oxidants. There is therefore a significant interest to monitor these molecules in the gas phase. High resolution spectroscopic studies of methylated furan compounds are generally limited to pure rotational spectroscopy in the vibrational ground state. This lack of results might be explained by the difficulties arisen from the internal rotation of the methyl group inducing non-trivial patterns in the rotational spectra. In this study, we discuss the benefits to assign the mm-wave rotational-torsional spectra of methylfuran with the global approach of the BELGI-Cs code compared to local approaches such as XIAM and ERHAM. The global approach reproduces the observed rotational lines of 2-methylfuran and 3-methylfuran in the mm-wave region at the experimental accuracy for the ground vt=0 and the first torsional vt=1 states with a unique set of molecular parameters. In addition, the V3 and V6 parameters describing the internal rotation potential barrier may be determined with a high degree of accuracy with the global approach. Finally, a discussion with other heterocyclic compounds enables the study of the influence of the electronic environment on the hindered rotation of the methyl group.  相似文献   
80.
The present review covers reports discussing potential applications of the specificity of Raman techniques in the advancement of digital farming, in line with an assumption of yield maximisation with minimum environmental impact of agriculture. Raman is an optical spectroscopy method which can be used to perform immediate, label-free detection and quantification of key compounds without destroying the sample. The authors particularly focused on the reports discussing the use of Raman spectroscopy in monitoring the physiological status of plants, assessing crop maturity and quality, plant pathology and ripening, and identifying plant species and their varieties. In recent years, research reports have presented evidence confirming the effectiveness of Raman spectroscopy in identifying biotic and abiotic stresses in plants as well as in phenotyping and digital selection of plants in farming. Raman techniques used in precision agriculture can significantly improve capacities for farming management, crop quality assessment, as well as biological and chemical contaminant detection, thereby contributing to food safety as well as the productivity and profitability of agriculture. This review aims to increase the awareness of the growing potential of Raman spectroscopy in agriculture among plant breeders, geneticists, farmers and engineers.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号