首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   41967篇
  免费   4107篇
  国内免费   7373篇
化学   35916篇
晶体学   1922篇
力学   2266篇
综合类   320篇
数学   2238篇
物理学   10785篇
  2024年   98篇
  2023年   380篇
  2022年   818篇
  2021年   858篇
  2020年   1187篇
  2019年   1081篇
  2018年   954篇
  2017年   1144篇
  2016年   1589篇
  2015年   1529篇
  2014年   1870篇
  2013年   2985篇
  2012年   3396篇
  2011年   2410篇
  2010年   2059篇
  2009年   2575篇
  2008年   2748篇
  2007年   2862篇
  2006年   2659篇
  2005年   2441篇
  2004年   2408篇
  2003年   2044篇
  2002年   2180篇
  2001年   1374篇
  2000年   1414篇
  1999年   1131篇
  1998年   998篇
  1997年   814篇
  1996年   815篇
  1995年   720篇
  1994年   684篇
  1993年   516篇
  1992年   535篇
  1991年   317篇
  1990年   260篇
  1989年   199篇
  1988年   196篇
  1987年   134篇
  1986年   123篇
  1985年   133篇
  1984年   110篇
  1983年   86篇
  1982年   81篇
  1981年   75篇
  1980年   71篇
  1979年   72篇
  1978年   54篇
  1977年   56篇
  1974年   43篇
  1973年   50篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
71.
Disordered Sr2FeMoO6 shows a drastic reduction in saturation magnetization compared to highly ordered samples, moreover magnetization as a function of the temperature for different disordered samples shows qualitatively different behaviours. We investigate the origin of such diversity by performing spatially resolved photoemission spectroscopy on various disordered samples. Our results establish that extensive electronic inhomogeneity, arising most probably from an underlying chemical inhomogeneity in disordered samples, is responsible for the observed magnetic inhomogeneity. It is further pointed out that these inhomogeneities are connected with composition fluctuations of the type Sr2Fe1+x Mo1-x O6 with Fe-rich (x > 0) and Mo-rich (x < 0) regions. Dedicated to Prof J Gopalakrishnan on his 62nd birthday.  相似文献   
72.
Mesoporous polymer microspheres with gold (Au) nanoparticles inside their pores were prepared considering their surface functionality and porosity. The Au/polymer composite microspheres prepared were characterized by transmission electron microscope (TEM), X‐ray diffraction (XRD), and Brunauer–Emmett–Teller (BET) techniques. The results showed that the adsorption of Au nanoparticles could be increased by imparting the pore structure and surface‐functional groups into the supporting polymer microspheres (in this study, poly (ethylene glycol dimethacrylate‐co‐acrylonitrile) and poly (EGDMA‐co‐AN) system). Above all, from this study, it was established that the porosity of the polymer microspheres is the most important factor that determines the distribution and adsorption amount of face‐centered cubic (fcc) Au nanoparticles in the final products. Our study showed that the continuous adsorption of Au nanoparticles with the aid of the large surface area and surface interaction sites formed more favorably the Au/polymer composite microspheres. The BET measurements of Au/poly(EGDMA‐co‐AN) composite microspheres reveals that the adsorption of Au nanoparticles into the pores kept the pore structure intact and made it more porous. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5627–5635, 2004  相似文献   
73.
The centrosymmetric binuclear structure of [Pb2(H‐Norf)2(ONO2)4]shows the geometry around each lead(II) atom to be distorted trigonal bipyramidal with Pb–O distances ranging from 2.357(3) to 2.769(4) Å. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
74.
用磁控溅射方法制备了系列坡莫合金Ni80Fe20薄膜。利用X射线衍射、扫描电子显微镜和原子力显徽镜分析了薄膜的结构、晶粒取向、薄膜厚度、截面结构和表面形态。用4点探测技术测量了薄膜的电阻和磁电阻。结果表明:随衬底温度的升高,晶粒明显长大。膜内的缺陷和应力显著减小,而且增强了薄膜晶粒的[111]择优取向。结果表明,薄膜电阻率显著减小,而磁电阻显著增大。  相似文献   
75.
Neutron diffraction and M?ssbauer measurements have been carried out on the cubic Laves phase intermetallic TbMnFe. The magnetic moment on the transition metal atom is found to be low, 0.2μ B, at room temperature. This moment is temperature independent down to 10 K. Magnetic moment on the rare earth atom varies from 2.5μ B at 296 K to 7.27μ B at 10 K. M?ssbauer spectra recorded at 298 K and 78 K have magnetic character but there is a large distribution of hyperfine field values. Both these features arise due to magnetic frustration created in the sample due to the competing ferro and antiferromagnetic interactions between the transition metal atoms.  相似文献   
76.
In this paper we report the results of a morphological and structural investigation on film properties of a soluble polydiacetylene, the poly[1,6-bis(3,6-dihexadecyl-N-carbazolyl)-2,4-hexadiyne] (polyDCHD-HS). The red films of this polymer, prepared by standard spin-coating techniques, revealed absence of linear dichroism and birefringence in contrast with the ordered mesophases detected by powder X-ray studies. In order to interpret the optical behavior of this polymer, we performed AFM and SEM studies of polyDCHD-HS films spun on hydrophylic and hydrophobic glass substrates. We found the presence of surfaces organized in rod-like particles, more regularly oriented on the hydrophylic substrate. GIXRD studies, carried out on films sufficiently thick to allow the observation of the diffraction pattern, reveled the presence of a lamellar structure with a spacing of 3.22 nm. The low intensity of the diffraction peaks and the isotropic linear optical properties of the films show that the lamellar mesophases are not extended over large areas. These findings were compared with the data obtained from AFM and SEM studies on films of two other polydiacetylenes, the poly[1-(3,6-dihexadexyl-N-carbazolyl)-6-(N-carbazolyl)-2,4-hexadyine] (polya-DCHD) and the poly[1,6-bis(3,6-dipalmitoyl-N-carbazolyl)-2,4-hexadyine] (polyDPCHD), spun on hydrophylic glass substrate. The results confirmed the presence of nodular morphologies which seem to be a general characteristic of this class of materials. The particles organization appears instead related to the chemical nature of the substituents on the carbazolyl rings.  相似文献   
77.
Products of thermal transformation of substituted N-aryl-o-quinoneimines were studied using NMR spectroscopy. The formation of 4aH-phenoxazine, which was further dimerized by the Diels—Alder reaction, was established.  相似文献   
78.
The transmission properties of elastic waves propagating in a three-dimensional composite structure embedded periodically with spherical inclusions are analyzed by the transfer matrix method in this paper. Firstly, the periodic composite structures are divided into many layers, the transfer matrix of monolayer structure is deduced by the wave equations, and the transfer matrix of the entire structure is obtained in the case of boundary conditions of displacement and stress continuity between layers. Then, the effective impedance of the structure is analyzed to calculate its reflectivity and transmissivity of vibration isolation. Finally, numerical simulation is carried out; the experiment results validate the accuracy and feasibility of the method adopted in the paper and some useful conclusions are obtained. Project (No. 50075029) supported by the National Natural Science Foundation of China.  相似文献   
79.
We give some sufficient conditions for the Domínguez-Lorenzo condition in terms of the James constant, the Jordan-von Neumann constant, and the coefficient of weak orthogonality. As a consequence, we obtain fixed point theorems for multivalued nonexpansive mappings.  相似文献   
80.
The dendrite growth process of transparent NaBi(WO4)2 with small prandtl and high melting point was studied by using the in-situ observation system. According to the dynamic images and detailed information, there are two kinds of restriction effect on the dendrite growth, the competition between arms and branches and the convection in the melt. The dendrite growth rate was time dependent, and the rate of arm growth reached the maximum 5.8 mm/s in the diffusive-advective region and rapidly decreased in the diffusive-convective region. The growth rate of branch had the same change trends as the arm’s. Based on the EPMA-EDS data of solidification structure of quenched NaBi(WO4)2 melt, it was found that there were component differences from stoichiometric concentration in the melt near the interface during the growth process. Supported by the National Natural Science Foundation of China (Grant No. 50331040) and the Innovation Funds from Shanghai Institute of Ceramics, Chinese Academy of Sciences (Grant No. SCX0623)  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号