首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1285篇
  免费   27篇
  国内免费   163篇
化学   1250篇
力学   2篇
数学   1篇
物理学   222篇
  2024年   2篇
  2023年   51篇
  2022年   36篇
  2021年   55篇
  2020年   45篇
  2019年   89篇
  2018年   76篇
  2017年   108篇
  2016年   64篇
  2015年   45篇
  2014年   82篇
  2013年   67篇
  2012年   88篇
  2011年   81篇
  2010年   55篇
  2009年   78篇
  2008年   81篇
  2007年   66篇
  2006年   71篇
  2005年   42篇
  2004年   47篇
  2003年   24篇
  2002年   19篇
  2001年   13篇
  2000年   10篇
  1999年   11篇
  1998年   6篇
  1997年   5篇
  1996年   4篇
  1995年   8篇
  1994年   8篇
  1993年   9篇
  1992年   6篇
  1991年   3篇
  1990年   15篇
  1988年   2篇
  1982年   2篇
  1980年   1篇
排序方式: 共有1475条查询结果,搜索用时 0 毫秒
21.

The labeling of oligo- and polynucleotides with fluorescent probes is an important technique for the analysis of DNAs and RNAs. The effect of duplex formation with complementary oligo-DNA on the quenching behavior of two fluorescent chromophores (eosin, Eo and tetramethylrhodamine, TMR) attached to the 5′-terminal of various 10mer oligo-DNAs was investigated and the dependence of the quenching on DNA base sequence is discussed. We found that guanine residues played a major role in the quenching of the fluorescence of the chromophores. Guanine residues on the complementary DNA near the chromophores, in particular, had a significant influence on the quenching.  相似文献   
22.
In this work, an ultrasensitive fluorescent polarization immunoassay (FPIA) method based on the quantum dot/aptamer/antibody/gold nanoparticles ensemble has been developed for the detection of adenosine triphosphate (ATP). DNA hybridization is formed when ATP is present in the PBS solution containing the DNA-conjugated quantum dots (QDs) and antibody-AuNPs. The substantial sensitivity improvement of the antibody-AuNPs-enhanced method is mainly attributed to the slower rotation of fluorescent unit when QDs-labeled oligonucleotides hybridize with antibody modified the gold nanoparticle. As a result, the fluorescent polarization (FP) values of the system increase significantly. Under the optimal conditions, a linear response with ATP concentration is ranged from 8 × 10−12 M to 2.40 × 10−4 M. The detection limit reached as low as 1.8 pM. The developed work provides a sensitive and selective immunoassay protocol for ATP detection, which could be applied in more bioanalytical systems.  相似文献   
23.
Herein the synthesis and characterization of new, lipophilic highly Zn2+-selective fluorescent probes are reported. High affinity for zinc (Kd 1.1–8.0 nM) over other biologically relevant metals and mixtures of metals was observed. Excitation at 360 nm afforded an emission spectrum with maximum at 530 nm for the zinc bound complex. The linear relationship between fluorescence intensity and zinc concentration indicates that FZnA-probes can be used for quantification. The probes have been synthesized in 28–45% overall yield and the feasibility for further functionalization with biologically relevant side chains has been demonstrated. In vitro studies using PC12 cells and 10 μM of one of the novel probes (FZnA-Ada) visualized endogenous labile Zn2+ after 45 min incubation time.  相似文献   
24.
As a noncovalent fluorescence probe, in this study, salicylaldehyde azine (SA) was introduced as a sensitive fluorescence‐based dye for detecting proteins both in 1D and 2D polyacrylamide electrophoresis gels. Down to 0.2 ng of single protein band could be detected within 1 h, which is similar to that of glutaraldehyde‐silver stain, but approximately four times higher than that of SYPRO Ruby fluorescent stain. Furthermore, comparative analysis of the MS compatibility of SA stain with SYPRO Ruby stain indicated that SA stain is compatible with the downstream of protein identification by LC‐MS/MS. Additionally, the probable mechanism of the SA stain was investigated by molecular docking. The results demonstrated that the interaction between SA and protein was mainly contributed by hydrogen bonding and hydrophobic forces.  相似文献   
25.
《Comptes Rendus Chimie》2014,17(5):477-483
The ligand Hbpq = N-(8-quinolyl)pyridine-2-carboxamide) has been prepared using tetrabutylammonium bromide (TBAB) as an environmentally friendly reaction medium. Four new complexes of this ligand, [M(bpq)X] (M = Cu(II), X = SCN̄ (1), N3̄ (2); M = Ni(II), X = SCN̄ (3), N3̄ (4)), have also been synthesized and fully characterized. The crystal and molecular structures of [Cu(bpq)(NCS)]n (1) have been determined by X-ray crystallography. Copper(II) ion adopts a distorted square pyramidal (4 + 1) coordination in this complex. Hbpq ligand shows a strong emission at 500 nm in acetonitrile solution. The emission is quenched in the presence of copper(II) acetate, apparently because of the formation of [Cu(L)(OAc)(H2O)] complex. Introduction of nitric oxide (NO) into the acetonitrile solution at room temperature induces an increase in the fluorescence intensity, presumably due to the reduction of Cu(II) to Cu(I). This process is reversible and can form a basis for direct detection of NO.  相似文献   
26.
In this work, a new highly selective and sensitive fluorescent sensor for detecting Cu2+ was developed based on rhodamine fluorophore. It displayed strong fluorescence “turn-on” effect upon addition of Cu2+, and possessed the function of naked eye recognition. The fluorescence enhancement also enabled the sensor to quantitatively analyze Cu2+ due to the formation of a stable 1:1 metal–ligand complex in a short time, and the complex possesses relatively good pH stability. In addition, the density functional theory calculations were adopted to investigate the molecular orbitals as well as the spatial structure. Simultaneously, the cell imaging and zebra fish experiments provided a broader application prospect in biological system.  相似文献   
27.
To date, various affinity-based protein labeling probes have been developed and applied in biological research to modify endogenous proteins in cell lysates and on the cell surface. However, the reactive groups on the labeling probes are also the cause of probe instability and nonselective labeling in a more complex environment, e. g., intracellular and in vivo. Here, we show that labeling probes composed of a sterically stabilized difluorophenyl pivalate can achieve efficient and selective labeling of endogenous proteins on the cell surface, inside living cells and in vivo. As compared with the existing protein labeling probes, probes with the difluorophenyl pivalate exhibit several advantages, including long-term stability in stock solutions, resistance to enzymatic hydrolysis and can be customized easily with diverse fluorophores and protein ligands. With this probe design, endogenous hypoxia biomarker in living cells and nude mice were successfully labeled and validated by in vivo, ex vivo, and immunohistochemistry imaging.  相似文献   
28.
《中国化学快报》2021,32(10):3057-3060
Intracellular pH is a key parameter related to various biological and pathological processes. In this study, a ratiometric pH fluorescent sensor ABTT was developed harnessing the amino-type excited-state intramolecular proton transfer (ESIPT) process. Relying on whether the ESIPT proceeds normally or not, ABTT exhibited the yellow fluorescence in acidic media, or cyan fluorescence in basic condition. According to the variation, ABTT behaved as a promising sensor which possessed fast and reversible response to pH change without interference from the biological substances, and exported a steady ratiometric signal (I478/I546). Moreover, due to the ESIPT effect, large Stokes shift and high quantum yield were also exhibited in ABTT. Furthermore, ABTT was applied for monitoring the pH changes in living cells and visualizing the pH fluctuations under oxidative stress successfully. These results elucidated great potential of ABTT in understanding pH-dependent physiological and pathological processes.  相似文献   
29.
Cathodoluminescence (CL) from InGaN grown on GaN hexagonal pyramid structures has been investigated. The facet structure can be controlled by the growth temperature and reactor pressure. GaN pyramid structures surrounded with facets were grown at 1020 C at a pressure of 500 Torr by low-pressure metalorganic vapor phase epitaxy (LP-MOVPE). The indium mole fraction in the InGaN film depends on the facet structure. The thickness of the InGaN and the peak wavelength and intensity of the CL from the InGaN gradually increased from the bottom to the top of the facets.  相似文献   
30.
A novel water-soluble solvatochromic molecule, 7-(dimethylamino)-2-fluorenesulfonate (2,7-DAFS), was prepared by a three-step reaction from 2-nitrofluorene in good overall yield. The pH and solvent effects on the UV-VIS absorption and fluorescence spectra of 2,7-DAFS have been studied. Protonation of the dimethylamino group switches the absorption from intramolecular charge-transfer (ICT) to π → π* transition. The ground state pKa value of 2,7-DAFS was determined as 4.51. The fluorescence spectrum of the excited basic form, *(DAFS), shows a structureless single band with a large Stokes shift, whereas that of the acidic form, *(+HDAFS), exhibits a structured band with a small Stokes shift. The emission intensities of the basic and acidic forms versus pH/Ho plots show stretched sigmoidal curves and indicate that (1) the rate of deprotonation of *(+HDAFS) is comparable to the fluorescence decay of the species, and (2) the efficient proton-induced quenching of *(DAFS) fluorescence occurs. The pKa* was estimated as −1.7 from the fluorescence titration curve. The fluorescence maximum of *(DAFS) is blue-shifted as the polarity of solvent decreases. However, no clear dependency of the emission intensity and spectral half width, and thus fluorescence quantum yield, on the solvent polarity was revealed. It appears that the fluorescence sensitivity of 2,7-DAFS is 15 ∼ 25 times greater than the sensitivity of a widely utilized fluorescent probe, 5-(dimethylamino)-1-naphthalenesulfonate. This higher sensitivity, together with the ease of derivatization, would provide the fluorene-based fluorescent molecules significant advantages for a variety of applications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号