首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   181篇
  免费   2篇
  国内免费   1篇
化学   137篇
物理学   47篇
  2023年   4篇
  2022年   25篇
  2021年   15篇
  2020年   7篇
  2019年   3篇
  2018年   1篇
  2017年   2篇
  2016年   2篇
  2015年   2篇
  2014年   3篇
  2013年   10篇
  2012年   2篇
  2011年   11篇
  2010年   10篇
  2009年   4篇
  2008年   5篇
  2007年   11篇
  2006年   3篇
  2005年   3篇
  2004年   1篇
  2003年   4篇
  2002年   2篇
  2001年   1篇
  2000年   5篇
  1999年   1篇
  1998年   2篇
  1997年   5篇
  1996年   2篇
  1995年   2篇
  1994年   3篇
  1993年   2篇
  1992年   4篇
  1991年   4篇
  1990年   3篇
  1989年   2篇
  1988年   3篇
  1987年   4篇
  1986年   3篇
  1985年   2篇
  1984年   2篇
  1983年   1篇
  1980年   1篇
  1979年   2篇
排序方式: 共有184条查询结果,搜索用时 15 毫秒
31.
An electroantennographic detector based on the antenna of the Colorado potato beetle (Leptinotarsa decemlineata Say, 1824) was used to investigate volatile organic compounds emitted by injured potato plants (Solanum tuberosum L., 1753). Samples were collected on charcoal traps using the CLSA method. Analyses were performed with a GC-EAD-FID setup as well as a GC-MS system. The experiments revealed that several groups of compounds are perceptible to the Colorado potato beetle. The ability of the Colorado potato beetle to detect green leaf odours (e.g. (Z)-3-hexen-1-ol and (E)-2-hexenal), linalool and some terpenes has been noticed before [Visser et al., J. Chem. Ecol. 5 (1979) 13]. In this work the presence of (Z)-3-hexen-1-ol, (E)-2-hexenal and linalool in the potato odour could be confirmed. Moreover, β-myrcene, benzeneethanol, and several sesquiterpenes (e.g. caryophyllene and germacrene-D) were identified. The GC-EAD experiments reveal that apart from the green leaf odours and linalool prominent reactions of the Colorado bettle antenna are induced by benzeneethanol and the sesquiterpene fraction.  相似文献   
32.
The volatile constituents of lulo del Chocó (Solanum topiro) fruit pulp obtained by liquid‐liquid extraction were analyzed by capillary GC and capillary GC‐MS. In total, 30 components were identified with methyl salicylate, hexadecanoic acid, hexanal, guaiacol, ethyl butanoate, and ethyl acetate being the major components. Chirospecific MDGC analysis revealed the predominance of (R)‐ethyl‐3‐hydroxybutanoate (ee 40%) and the presence of racemic mixtures both of δ‐octalactone and of δ‐decalactone. For γ‐hexalactone, γ‐octalactone, and γ‐decalactone enantiomeric distributions of 22.4 : 77.6, 22.9 : 77.1, and 20.0 : 80.0, (R) : (S), respectively, were determined. Glycosidically bound aroma compounds were identified by capillary GC and capillary GC‐MS after isolation of the glycosidic fraction obtained by Amberlite XAD‐2 adsorption and methanol elution followed by hydrolysis with a commercial pectinase enzyme. In total 13 bound aroma compounds (aglycones) were identified. These aglycones mainly consisted of compounds exhibiting aromatic structures. Additionally, with the aid of capillary GC and capillary GC‐MS (EI and NCI) of trifluoroacetylated derivatives we identified eight glucosides: the novel 3,6‐epoxy‐7‐megastigmen‐5,9‐diol β‐D‐glucopyranoside and the hexyl, benzyl, linalyl oxide (furanic), 2‐phenylethyl, vomifolyl (isomer 1), (6S,9R)‐vomifolyl, and scopoletin β‐D‐glucopyranosides.  相似文献   
33.
Memory operations based on variation of a molecule’s properties are important because they may lead to device miniaturization to the molecular scale or increasingly complex information processing protocols beyond the binary level. Molecular memory also introduces possibilities related to information‐storage security where chemical information (or reagents) might be used as an encryption key, in this case, acidic/basic reagents. Chemical memory that possesses both volatile and non‐volatile functionality requires reversible conversion between at least two chemically different stable or quasi‐stable states. Here we have developed the phenol–phenoxide equilibrium of phenol fluorophores as a data storage element, which can be used to write or modulate data using chemical reagents. The properties of this system allow data to be stored and erased either in non‐volatile or volatile modes. We also demonstrate non‐binary switching of states made possible by preparation of  a composite containing the molecular memory elements.  相似文献   
34.
采用固相微萃取-气相色谱-质谱(SPME-GC-MS)法对成品卷烟烟丝和卷烟烟气总粒相物中挥发性和半挥发性成分进行了分析鉴定,并对鉴定出的70种成分和96种成分进行了比较。  相似文献   
35.
The present study aimed to isolate volatile organic compounds (VOCs) from fresh (FrHSc) and air-dried (DrHSc) Halopteris scoparia (from the Adriatic Sea) by headspace solid-phase microextraction (HS-SPME) and hydrodistillation (HD) and to analyse them by gas chromatography and mass spectrometry (GC–MS). The impact of the season of growth (May–September) and air-drying on VOC composition was studied for the first time, and the obtained data were elaborated by principal component analysis (PCA). The most abundant headspace compounds were benzaldehyde, pentadecane (a chemical marker of brown macroalgae), and pentadec-1-ene. Benzaldehyde abundance decreased after air-drying while an increment of benzyl alcohol after drying was noticed. The percentage of pentadecane and heptadecane increased after drying, while pentadec-1-ene abundance decreased. Octan-1-ol decreased from May to September. In HD-FrHSc, terpenes were the most abundant in June, July, and August, while, in May and September, unsaturated aliphatic compounds were dominant. In HD-DrHSc terpenes, unsaturated and saturated aliphatic compounds dominated. (E)-Phytol was the most abundant compound in HD-FrHSc through all months except September. Its abundance increased from May to August. Two more diterpene alcohols (isopachydictyol A and cembra-4,7,11,15-tetraen-3-ol) and sesquiterpene alcohol gleenol were also detected in high abundance. Among aliphatic compounds, the dominant was pentadec-1-ene with its peak in September, while pentadecane was present with lower abundance. PCA (based on the dominant compound analyses) showed distinct separation of the fresh and dried samples. No correlation was found between compound abundance and temperature change. The results indicate great seasonal variability of isolated VOCs, as well among fresh and dried samples, which is important for further chemical biodiversity studies.  相似文献   
36.
Avocados are a superfood gaining popularity in people's diet. Profiling and quantifying the volatiles associated with flavor can further help in understanding the fruit. However, this is challenging due to relatively low abundance of volatile compounds. The complex mixtures inherent to avocado flavor can result in coelutions using classical chromatographic techniques. To overcome these challenges, solid-phase microextraction was used to extract and preconcentrate volatiles, then separated and quantified using two-dimensional gas chromatography with a flame ionization detector. This technique enhances separation power and produces well-ordered chromatograms, allowing for templated groupings of compounds of similar chemical composition into regions. Using the flame ionization detector, an average response factor was determined and used for quantification of these templated group-type regions, as well as individual compounds. This group-type quantification improved the overall precision of compound classes in 50 avocados by at least a factor of 2, when compared to that of the individual components. Overall, the abundance of associated flavor groups, such as terpenes and alcohols decreased, whereas aldehyde groups remained constant throughout ripening. The combination of solid-phase microextraction with two-dimensional gas chromatography and group-type quantification allows for an overall better understanding of the volatiles associated with flavor of avocados.  相似文献   
37.
Ultrasound (US) is an emerging technology capable of affecting enzymes and microorganisms, leading to the release of amino acids and the formation of volatile compounds. The effect of different exposure times (0, 3, 6, and 9 min) of US (25 kHz, 128 W) on the proteolysis and volatile compounds of dry fermented sausages during processing (day 0 and 28) and storage (day 1 and 120) was investigated. Lower alanine, glycine, valine, leucine, proline, methionine, and tyrosine levels were observed at the beginning of manufacture for the sample subjected to 9 min of US (p < 0.05) when compared to the control. During the storage period, the samples subjected to US exposure for 3 and 6 min exhibited higher free amino acid levels. A greater formation of hexanal, pentanal, and hexanol was observed in the US-treated samples when compared to the control (p < 0.05), as well as other derivatives from the oxidation reactions during the storage. The use of US (25 kHz and 128 W) in the manufacture of dry fermented sausages can affect the proteolysis and the formation of compounds derived from lipid oxidation during the storage.  相似文献   
38.
Summary Thermal desorption is a valuable method for the fractionation of plant volatile components, which can be carried out on-line with GC analysis. The use of coupled GC-MS affords additional qualitative information, of special interest for plant species whose composition has not been previously studied. Some examples of the application of automatic thermal desorption, coupled to GC-MS to the identification and characterization of volatile components of plants of different families are given.  相似文献   
39.
Summary Automatic thermal desorption (ATD) has been evaluated for the analysis of volatile components from dairy products. It has resulted in a fast and reproducible method which needs only a low amount of sample. Volatile components from milk are collected by off-line purging and trapped on cartridges packed which a suitable adsorbent. Cheese samples are submitted to the same process or directly introduced into the cartridges. The desorption step that follows is carried out automatically and on-line with the chromatographic analysis. Repeatability and sensitivity were satisfactory for both types of products.  相似文献   
40.
The volatile profiles (VOC) and the essential oil (EO) composition from the aerial parts of Salvia broussonetii were analysed. Sesquiterpene hydrocarbons dominate the VOCs from leaves (95.7%) and flowers (67.6%), followed by monoterpene hydrocarbons (2.6 and 29.7%, respectively). The main common compounds are germacrene D, β-bourbonene, α-pinene, α-copaene and α-gurjunene, even if with divergent relative abundances. In the leaf EOs the sesquiterpenes prevail, even if not overwhelmingly (about 50.0%), followed by monoterpenes (23.0–35.0%) and by minor fractions of diterpene hydrocarbons and non-terpene derivates. The most abundant common compounds across the two sampling periods are α-pinene, β-pinene, isobornyl acetate, α-gurjenene, germacrene D and bifloratriene. A morphological characterisation of the trichomes responsible for the productivity in terpenes was also performed. Four different morphotypes were observed on the above ground organs of S. brussonetii: peltates and capitates of type II and III resulted the only producers of volatile substances.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号