首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1664篇
  免费   28篇
  国内免费   121篇
化学   1222篇
晶体学   2篇
力学   49篇
综合类   4篇
数学   8篇
物理学   528篇
  2024年   6篇
  2023年   10篇
  2022年   20篇
  2021年   23篇
  2020年   46篇
  2019年   77篇
  2018年   23篇
  2017年   47篇
  2016年   34篇
  2015年   30篇
  2014年   32篇
  2013年   121篇
  2012年   91篇
  2011年   153篇
  2010年   92篇
  2009年   133篇
  2008年   90篇
  2007年   140篇
  2006年   98篇
  2005年   115篇
  2004年   72篇
  2003年   44篇
  2002年   52篇
  2001年   33篇
  2000年   38篇
  1999年   34篇
  1998年   24篇
  1997年   25篇
  1996年   23篇
  1995年   19篇
  1994年   11篇
  1993年   12篇
  1992年   7篇
  1991年   9篇
  1990年   4篇
  1989年   5篇
  1988年   2篇
  1987年   2篇
  1986年   3篇
  1985年   4篇
  1984年   4篇
  1983年   2篇
  1982年   1篇
  1981年   1篇
  1979年   1篇
排序方式: 共有1813条查询结果,搜索用时 78 毫秒
71.
Poly(vinyl alcohol)/melamine phosphate composites (PVA/MP) as a novel halogen‐free, flame‐retardant foam matrix were prepared through thermal processing, and then their thermal stability and flame retardancy were investigated by thermo‐gravimetric analysis, micro‐scale combustion calorimeter, cone calorimeter, vertical burning test, and limiting oxygen index (LOI) test. It was found that the thermal stability and combustion properties of the PVA/MP composites could be influenced by the addition of MP. Compared with the control PVA sample (B‐PVA), in the PVA/MP (75/25) composites, the temperature at 5% mass loss (T5%) decreased about 10°C, the residual chars at 600°C increased by nearly 27%, the temperature at the maximum peak heat release rate (TP) shifted from 292°C to 452°C, and the total heat released and the heat release capacity (HRC) decreased by 28% and 14%, respectively. Moreover, the PVA/MP composites could reach LOI value up to 35% and UL94 classification V‐0, showing good flame retardancy. At the same time, both Fourier transform infrared and X‐ray photoelectron spectroscopy spectra of the residual chars from the PVA/MP composites demonstrated that the catalytic effect of MP on the dehydration and decarboxylation reactions of PVA, and the chemical reactivity of MP during the chars‐forming reactions could be used to account for the changed thermal stability and flame retardancy of the PVA/MP composites. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
72.
Novel oligomeric intumescent flame retardants, poly(amino phosphonate ester)s (PAPEs), containing both phosphorous and nitrogen, were synthesized by reacting diethyl phosphite with two different polyschiff bases obtained from the reaction of diamines with dialdehyde. The target PAPEs (designated as PAPE‐d and PAPE‐e, respectively) were characterized by 1H NMR, 31P NMR, Fourier Transform infrared spectroscopy, elemental analysis, gel permeation chromatography and thermogravimetric analysis (TGA) techniques. Thermal stability and flammability of ethylene‐vinyl acetate copolymer (EVA)/PAPE blends with various PAPE content were investigated by TGA, limited oxygen index (LOI), vertical burning test (UL‐94) and microscale combustion colorimeter (MCC). The results indicate that PAPEs effectively improve the flame retardancy of EVA. The EVA/30%PAPE‐e blend has a LOI value of 28, and its peak heat release rate (PHRR) value in MCC measurement is reduced by 36%. At the same time, the EVA/PAPE blends also have high yield of residual char, indicating that PAPEs are effective charring agents. Scanning electron microscopy observations of the residues of the EVA/PAPE blends show the existence of compact char layer on the surface of the residues, which is responsible for the improvement of the flame retardancy of EVA. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
73.
Water blown rigid polyurethane foams (PUF) with organoclay/organically modified nanoclay (ONC) were prepared and their properties such as density, mechanical, morphological, insulation, thermal and flame retardant properties were studied. In this investigation, the ONC content was varied from 1 to 10 parts per hundred of polyol (php) by weight. It was observed that the compressive strength of ONC filled PUF increased up to 3 php of ONC loading and then it decreased. Wide angle X-ray diffraction and transmission electron microscopy studies indicated the exfoliated dispersion of ONC in PUF. The thermal conductivity of ONC filled PUF decreases up to 5 php and then increases. The glass transition temperature (Tg) of PUF decreases on loading of ONC. The TGA analysis shows that there is slight increase in degradation temperature with increase in ONC loading. The flame retardant properties (LOI and flame spread rate) are improved slightly on addition (3 php) of ONC filled PUF.  相似文献   
74.
The paper presents a new method based on simultaneous derivatization and air-assisted liquid–liquid microextraction (AALLME) for the extraction and preconcentration of some aliphatic amines prior to gas chromatography-flame ionization detection (GC-FID). Primary aliphatic amines are derivatized and extracted simultaneously by a fast reaction with butylchloroformate (derivatization agent/extraction solvent) under mild conditions. The mixture of butylchloroformate and aqueous sample solution is rapidly sucked into a 10-mL glass syringe and then is injected into a test tube with conical bottom and the procedure is repeated seven times. After centrifuging the resulted cloudy solution, the derivatized analytes in the sedimented phase are determined by GC-FID. The influence of main factors on the efficiency of derivatization/extraction procedure is studied. Under the optimal conditions, the enrichment factors (EFs) for aliphatic amines are obtained in the range of 248–360 and limits of detection (LODs) are between 0.30 and 2.6 μg L−1. The obtained extraction recoveries ranged from 50 to 72% and the relative standard deviation (RSD) was less than 4.8% for intra-day (n = 6) and inter-days (n = 4) precision. The method is successfully applied to determine some aliphatic amines in environmental water samples.  相似文献   
75.
In this study, a method of dispersive liquid phase microextraction combined with the flame atomic absorption spectrometry was proposed for the determination of trace Hg using diphenylthiocarbazone as chelating reagent. Several factors which have effect on the microextraction efficiency of Hg, such as pH, extraction and dispersive solvent type and their volume, concentration of the chelating agent, extraction time were investigated, and the optimized experimental conditions were established. After extraction, the enrichment factor was 68. The detection limit of the method was 45 ng mL?1, and the relative standard deviation for eight determinations of 2 μg mL?1 Hg was 1.7%. The results for the determination of Hg in environmental water samples (tap water, well water, mineral water and Caspian sea water) have demonstrated the applicability of the proposed method.  相似文献   
76.
A novel reactive phosphorus-containing monomer [1-oxo-2,6,7-trioxa-1- phosphabicyclo-[2.2.2]octane-methyl diallyl phosphate, PDAP] was synthesized, and various amounts of PDAP were combined with unsaturated polyester by radical bulk polymerization. The resulting flame-retardant unsaturated polyester resin (FR-UPR) samples were investigated by thermogravimetric analysis (TGA), microscale combustion calorimetry (MCC), and limiting oxygen index (LOI) tests. Due to the relatively high phosphorus content of PDAP (18.2 wt%), incorporation of this monomer into unsaturated polyester resin (UPR) led to a marked decrease in the heat release capacity (HRC), the total heat release (THR), an increase in the LOI and the char yield upon combustion. In order to elaborate the interactions between the UPR and PDAP in degradation, differences between the experimental and theoretical mass losses of a FR-UPR sample were evaluated. Furthermore, thermogravimetry-Fourier transform infrared (TG-FTIR) and real-time Fourier transform infrared (RTIR) spectroscopy were employed to investigate the degradation behavior of UPRs, providing insight into the degradation mechanism.  相似文献   
77.
A novel functionalized α-zirconium phosphate (F-ZrP) modified with intumescent flame retardant was synthesized by co-precipitation method and characterized. Poly (lactic acid) (PLA)/F-ZrP nanocomposites were prepared by melt blending method. The thermal stability and combustion behavior of PLA/F-ZrP nanocomposites were investigated by thermogravimetric analysis (TGA), limiting oxygen index (LOI), vertical burning test (UL-94), scanning electronic microscopy (SEM), and cone calorimeter test (CCT). The results showed that the addition of flame retardant F-ZrP slightly affect PLA's thermal stability, but significantly improve the flame retardancy of PLA composites. In comparison with neat PLA, the LOI value of PLA/F-ZrP was increased from 19.0 to 26.5, and the UL-94 rating was enhanced to V-0 as the loading of F-ZrP at 10%. SEM results suggested the introduction of F-ZrP in the PLA system can form compact intumescent char layer during burning. All these results showed that the F-ZrP performed good flame retardancy for PLA.  相似文献   
78.
Liquid polysiloxane (PSI) and zinc borate (ZB) were combined for the flame retardance of polycarbonate (PC). During polymer combustion, for the PC flame-retarded with PSI only, PSI can form char residue containing silica on the material surface. But the liquid silicone tends to drip with melting polymer and volatilize in high temperature, thus decreasing the charring performance. In the case of only ZB flame retardant involved, this inorganic flame retardant and possible some of its decomposition products (B2O3) more difficultly move to the surface and it appears that they do not effectively contribute to the char formation. Present study suggests that the existing synergism between PSI and ZB is the result of chemical reaction via forming cross-linking B–O–Si structure. As results, the loss of Si/silicone is reduced by eliminating the melt dripping. Meanwhile, boron species can be “dragged” by PSI (in the form of borosiloxane) to the surface of the char residue. Consequently, Si and B elements together contribute to the integrity of char residue layer with better quality, achieving obviously improved flame retardance compared with only PSI and only ZB flame retardant systems.  相似文献   
79.
The effect of on-line ultrasound application by a special static mixer die which promotes extensional flow simultaneously during the single screw extrusion process was thoroughly studied. The proportion of aluminum trihydroxide (ATH) used as flame retardant on high density polyethylene (HDPE) was optimized. The morphological, thermal, flammability, combustion, mechanical and rheological properties of the materials were investigated. The morphological study pointed out that this process is able to strongly reduce the size of ATH particles and improve their dispersion and distribution within the polymer matrix. The addition of zinc borate (ZB) at low concentration (namely 3 phr) showed its well-known synergistic effect in the thermal, oxygen index and fire combustion behavior. According to the UL94 standard, the rating for all materials tested changed from HB to V2, with respect to materials prepared without ultrasound; furthermore a rating V0 was achieved only with the addition of 2 phr organo-clay. Rheological results under simple and small amplitude oscillatory shear flow confirmed the enhanced particle dispersion and finer particle morphology evidenced by larger values of the moduli and by deviations from the semicircular shape observed in the Cole–Cole diagram. Mechanical properties such as Izod impact resistance, tensile strength, strain at break and tenacity were also improved by the on-line ultrasound process. In this work, the appropriate on-line ultrasound extrusion conditions to use the lowest ATH content (30 phr or 21.5 in wt%) were found, rendering HDPE optimized flame retardant materials with improved processability and mechanical properties.  相似文献   
80.
采用新工艺路线合成高熔点磷酸酯阻燃剂———对苯二酚双(二苯基磷酸酯)(HDP).首先采用对苯二酚和三氯氧磷合成中间产物,再将中间产物与苯酚反应,经分离纯化得到产品HDP,收率达到90%以上,常温下为白色固体.采用傅里叶红外光谱、氢谱、磷谱和质谱测试确定了其结构.同时,研究了HDP的阻燃性,并与间苯二酚双(二苯基磷酸酯)(RDP)进行了比较,研究发现当HDP和RDP分别与成炭剂酚醛树脂(NP)按20/10比例添加到丙烯腈-丁二烯-苯乙烯(ABS)树脂中,增强了复合材料凝聚相阻燃作用,极限氧指数(LOI)有所提高.通过热重及锥形量热分析两种复合材料以及各种组分的热降解过程,阻燃剂的添加对ABS树脂的热稳定性和残炭量明显提高,而且ABS/HDP/NP复合材料的抑烟性更好;同时采用扫描电镜(SEM)和X射线能量色散谱(EDS),发现ABS/HDP/NP复合材料燃烧后成炭空隙均匀,其残炭中磷分布比ABS/RDP/NP复合材料残炭中的磷分布更加均匀.研究表明,HDP与NP互配添加到ABS中,在凝聚相阻燃作用优于RDP.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号