首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1376篇
  免费   176篇
  国内免费   98篇
化学   1043篇
晶体学   8篇
力学   40篇
数学   182篇
物理学   377篇
  2024年   1篇
  2023年   21篇
  2022年   28篇
  2021年   35篇
  2020年   50篇
  2019年   53篇
  2018年   55篇
  2017年   70篇
  2016年   79篇
  2015年   90篇
  2014年   122篇
  2013年   152篇
  2012年   90篇
  2011年   106篇
  2010年   110篇
  2009年   104篇
  2008年   69篇
  2007年   72篇
  2006年   58篇
  2005年   43篇
  2004年   37篇
  2003年   28篇
  2002年   19篇
  2001年   20篇
  2000年   13篇
  1999年   19篇
  1998年   12篇
  1997年   13篇
  1996年   6篇
  1995年   9篇
  1994年   6篇
  1993年   10篇
  1992年   3篇
  1991年   12篇
  1990年   7篇
  1989年   9篇
  1988年   3篇
  1987年   2篇
  1986年   2篇
  1985年   4篇
  1984年   2篇
  1982年   3篇
  1976年   1篇
  1972年   1篇
  1971年   1篇
排序方式: 共有1650条查询结果,搜索用时 46 毫秒
51.
Novel functionalized graphene adsorbent was prepared and characterized using different techniques. The prepared adsorbent was applied for the removal of cadmium ions from aqueous solution. A response surface methodology was used to evaluate the simple and combined effects of the various parameters, including adsorbent dosage, pH, and initial concentration. Under the optimal conditions, the cadmium removal performance of 70% was achieved. A good agreement between experimental and predicted data in this study was observed. The experimental results revealed of cadmium adsorption with high linearity follow Langmuir isotherm model with maximum adsorption capacity of 502 mg g?1, and the adsorption data fitted well into pseudo‐second order model. Thermodynamic studies showed that adsorption process has exothermic and spontaneous nature. The recommended optimum conditions are: cadmium concentration of 970 mg L?1, adsorbent dosage of 1 g L?1, pH of 6.18, and T = 25 °C. The magnetic recovery of the adsorbent was performed using a magnetic surfactant to form a noncovalent magnetic functionalized graphene. After magnetic recovery of the adsorbent both components (adsorbent and magnetic surfactant) were recycled by tuning the surface charges through changing the pH of the solution. Desorption behavior studied using HNO3 solution indicated that the adsorbent had the potential for reusability.  相似文献   
52.
The pH‐sensitive tertiary amino groups were introduced to synthesize temperature and pH dual‐sensitive degradable polyaspartamide derivatives (phe/DEAE‐g‐PHPA) containing pendant aromatic structures and ionizable tertiary amino groups. The thermo/pH‐responsive behavior of phe/DEAE‐g‐PHPA polymer can be tuned by adjusting the graft copolymer composition. Due to the pH sensitivity of the phe/DEAE‐g‐PHPA‐g‐mPEG polymer with hydrophilic long PEG chain, the micelles and the anticancer drug‐loaded micelles were prepared by a quick pH‐changing method without using toxic organic solvent. The obtained polymeric micelles, paclitaxel‐loaded micelles and doxorubicin‐loaded micelles were stable under physiological conditions. Both the drug‐loaded micelles showed much faster release at pH 5 than at pH 7.4. The doxorubicin‐loaded micelles showed obvious and better anticancer activity against both HepG2 and HeLa cells than free doxorubicin. Thus these nontoxic, dual thermo‐ and pH‐sensitive phe/DEAE‐g‐PHPA‐g‐mPEG micelles may be a promising anticancer drug delivery system. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 879–888  相似文献   
53.
pH‐responsive hydrogels are capable of converting chemical energy to mechanical work. To optimize their use as actuators, their response when operating against an external load must be fully characterized. Here, the actuation strain of a model pH‐sensitive hydrogel as a function of different constant loads is studied. The experimental actuation strain, produced by switching the pH from 2 to 12, decreases significantly and monotonically with increasing initial tensile load. Two models are developed to predict the actuation strain as a function of applied stress. Simple mechanical models based on the change in hydrogel modulus and cross sectional area due to the change in pH are unsatisfactory as they predict only a small change in actuation strain with increasing external stress. However, the model based on the elastic and mixing free energy functions derived from the Flory–Huggins theory is found to accurately account for the actuation strain as a function of stress. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 218–225  相似文献   
54.
55.
Light‐responsive crosslinked structures were prepared by a straightforward quaternization strategy using chloride functional polystyrene copolymers and commercially available Michler's ketone with varying feed ratios. Resulting organogels demonstrated excellent solvent absorption and their swelling characteristics were altered by UV‐light irradiation. According to scanning electron microscope images, UV‐illuminated samples showed an obvious photodecomposition, which enhanced their solvent uptake capacity with increase of UV exposure. Additionally, release behavior of eosin Y as a model compound was determined by UV–vis and fluorescence spectrometers. Achieved photoactive gels were also employed as the reusable heterogeneous initiators for photoinduced free‐radical polymerization of methyl methacrylate. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019, 57, 1275–1282  相似文献   
56.
Insoluble sludge is generated in the reprocessing of spent fuel. The sludge obtained from the dissolution of irradiated fuel from the “Joyo” experimental fast reactor was analyzed to evaluate its chemical form. The sludge was collected by the filtration of the dissolved fuel solution, and then washed in nitric acid. The yields of the sludge weight were less than 1% of the total fuel weight. The chemical composition of the sludge was analyzed after decomposition by alkaline fusion. Molybdenum, technetium, ruthenium, rhodium, and palladium were found to be the main constituent elements of the sludge. X-ray diffraction patterns of the sludge were attributable to Mo4Ru4RhPd, regardless of the experimental conditions. The concentrations of molybdenum and zirconium in the dissolved fast reactor fuel solutions were low, indicating that zirconium molybdate hydrate is produced in negligible amounts in the process.  相似文献   
57.
Abstract

Functional imaging of biologic parameters like in vivo tissue metabolism is made possible by Positron Emission Tomography (PET). Many techniques have been suggested for extracting such images from dynamic time-course sequences of reconstructed PET scans. Quantitating the precision of these estimates is important for drawing inferences on the biologic parameters. Analytic variance formulas are not immediate owing to the nonlinear methods used in extraction. The usual resampling approach is infeasible because each image reconstruction in PET is a computationally demanding solution to a high-dimensional linear inverse problem. We suggest an alternative simulation approach that approximates the distribution of reconstructed PET scans and performs a parametric bootstrap in the imaging domain. Results on a simplified model chosen to match the characteristics of PET reconstruction are very encouraging. Mixture analysis is used to estimate functional images; however, the suggested approach is general enough to extend to other techniques or imaging methods.  相似文献   
58.
A new electroactive polymer 1 with alternating NDI (naphthalene diimide) moieties and fluorinated alkyl chains was prepared and characterized. Gels of polymer 1 were formed in several solvents. Interestingly, gels of polymer 1 exhibited responsiveness toward N2H4, F? and CN?. Absorption and ESR spectroscopic studies revealed that such responsiveness is owing to the reduction of NDI moieties into the respective NDI.?. In addition, thin films of polymer 1 were easily prepared with spin‐coating technique and the electrical conductivity of thin films reached 52.4 S/m after exposure to N2H4 vapor.  相似文献   
59.
Porous shape memory polymers (SMPs) exhibit geometric and volumetric shape change when actuated by an external stimulus and can be fabricated as foams, scaffolds, meshes, and other polymeric substrates that possess porous three-dimensional macrostructures. These materials have applications in multiple industries such as textiles, biomedical devices, tissue engineering, and aerospace. This review article examines recent developments in porous SMPs, with a focus on fabrication methods, methods of characterization, modes of actuation, and applications. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 1300–1318  相似文献   
60.
Gold nanoparticles (AuNPs) were synthesized by reduction of chloroauric acid (HAuCl4) aqueous solution with hydrazine monohydrate. The AuNPs were immediately treated with cysteamine to obtain amine‐functionalized nanoparticles (Au‐NH2). The reaction of Au‐NH2 with epichlorohydrin and subsequent treatment with sodium hydroxide gave epoxidized AuNPs (Au‐EP). Then, thiol‐capped AuNPs (Au‐SH) were synthesized by reaction of Au‐EP with cysteamine. A ‘grafting to’ approach was utilized to graft bromine‐terminated poly(N ,N ′‐dimethylaminoethyl methacrylate), synthesized via aqueous atom transfer radical polymerization, with various molecular weights (6280, 25 800, 64 200 and 87 600 g mol−1) onto Au‐SH to obtain Au‐P1, Au‐P2, Au‐P3 and Au‐P4 samples, respectively. All samples were exposed to temperature and pH variations, and Z‐average diameter was monitored using dynamic light scattering. According to the results, polymer‐grafted nanoparticles collapsed at lower temperatures with increasing solution pH for all molecular weight ranges due to deprotonation of tertiary amine groups. However, higher molecular weight polymers were more sensitive to pH variation especially in alkaline media. Also, a high degree of agglomeration was observed for Au‐P4 nanoparticles in alkaline media on increasing the temperature to 55 and 65 °C.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号