首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1376篇
  免费   176篇
  国内免费   98篇
化学   1043篇
晶体学   8篇
力学   40篇
数学   182篇
物理学   377篇
  2024年   1篇
  2023年   21篇
  2022年   28篇
  2021年   35篇
  2020年   50篇
  2019年   53篇
  2018年   55篇
  2017年   70篇
  2016年   79篇
  2015年   90篇
  2014年   122篇
  2013年   152篇
  2012年   90篇
  2011年   106篇
  2010年   110篇
  2009年   104篇
  2008年   69篇
  2007年   72篇
  2006年   58篇
  2005年   43篇
  2004年   37篇
  2003年   28篇
  2002年   19篇
  2001年   20篇
  2000年   13篇
  1999年   19篇
  1998年   12篇
  1997年   13篇
  1996年   6篇
  1995年   9篇
  1994年   6篇
  1993年   10篇
  1992年   3篇
  1991年   12篇
  1990年   7篇
  1989年   9篇
  1988年   3篇
  1987年   2篇
  1986年   2篇
  1985年   4篇
  1984年   2篇
  1982年   3篇
  1976年   1篇
  1972年   1篇
  1971年   1篇
排序方式: 共有1650条查询结果,搜索用时 31 毫秒
101.
We demonstrate micromechanical strain sensors with integrated readout based on carbon nanocones and discs (CNCs) which are aligned into a string‐like formation using an alternating electric field and studied by AC impedance spectroscopy and electromechanical methods. The CNC particles are first dispersed into a polymer matrix with a particle fraction of 0.1 vol %. This value is well below the percolation threshold (~ 2 vol %), which suppresses particle aggregation and facilitates transparency allowing the use of an UV‐curable polymer. Alignment was carried out with a 1 kHz, 4 kV/cm electric field and is a consequence of dielectrophoretic effect. It develops in minutes and makes the initially insulating, nonaligned material conductive. This is followed by UV curing of the polymer matrix, which renders a solid state device. The stretching of the aligned strings in the cured polymer leads to a reversible piezoresistive effect, and a gauge factor of about 50 is observed. This is in a sharp contrast to CNC films with particle fraction above percolation threshold (13 vol %), which are conductive but not sensitive to stretching. The strings are Ohmic in nature and moreover show higher DC conductivity (22–500 S/m) compared to identically prepared carbon black strings (1–22 S/m). © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2011  相似文献   
102.
The self‐assembly into supramolecular polymers is a process driven by reversible non‐covalent interactions between monomers, and gives access to materials applications incorporating mechanical, biological, optical or electronic functionalities. Compared to the achievements in precision polymer synthesis via living and controlled covalent polymerization processes, supramolecular chemists have only just learned how to developed strategies that allow similar control over polymer length, (co)monomer sequence and morphology (random, alternating or blocked ordering). This highlight article discusses the unique opportunities that arise when coassembling multicomponent supramolecular polymers, and focusses on four strategies in order to control the polymer architecture, size, stability and its stimuli‐responsive properties: (1) end‐capping of supramolecular polymers, (2) biomimetic templated polymerization, (3) controlled selectivity and reactivity in supramolecular copolymerization, and (4) living supramolecular polymerization. In contrast to the traditional focus on equilibrium systems, our emphasis is also on the manipulation of self‐assembly kinetics of synthetic supramolecular systems. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 34–78  相似文献   
103.
In this work, we prepared a tertiary amide-based gemini surfactant (DSTAPA), which contained two pH-sensitive tertiary amide head groups. Then the molecule state distribution and self-assembly transition of the surfactant in aqueous solution were investigated under different pH conditions. The DSTAPA molecules were on the states of double cationic (DSTAPAH2+), single cationic (DSTAPAH+), and double tertiary amine groups (DSTAPA) under acidic, neutral, and basic conditions, respectively. With the variation of the molecule states, the sample was water-like below pH of 6.8 and immediately transformed to gel-like fluid between pH of 6.8 and 7.8, then changed to white precipitate with the further increase of pH value. Furthermore, the microstructure and regulation mechanism were investigated by rheological measurements, dynamic light scattering, and cryogenic transmission electron microscopy. The appearance and micelle transitions of the DSTAPA aqueous solution are actually owing to the spherical–worm-like micelle transition, leading to dramatic viscosity increase and hydrogel formation. This transition was completely reversible and repeated for at least three cycles. Finally, a reasonable mechanism of the transition was proposed based on the viewpoints of the molecular states and micelle structures. The DSTAPA aqueous system with pH-reversible property has a great potential application in oil and gas production.  相似文献   
104.
The amphiphilic organoboron block copolymer poly (styreneboronic acid)‐block‐polystyrene ( PSBA‐b‐PS ) has been prepared through a postpolymerization modification route from the silicon‐functionalized block copolymer poly(4‐trimethylsilylstyrene)‐block‐polystyrene ( PSSi‐b‐PS ). PSBA‐b‐PS is obtained through highly selective reaction of PSSi‐b‐PS with BBr3 at room temperature and subsequent hydrolysis of the BBr2‐functionalized intermediate. Transmission electron microscopy studies demonstrate that PSBA‐b‐PS undergoes pH dependent micellization in aqueous solution. Different morphologies could be realized by using different mixtures of water and organic solvents. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2438–2445, 2010  相似文献   
105.
Patterns were generated inside a horizontal cylinder rotating at low speeds. The cylinder was filled with a very low volume liquid fraction of 1.8% of Newtonian fluid and the rotation speed ranged between 0.08 and 5.2 s−1. A novel laser-plane technique was utilized to obtain time series from each pattern. This enabled the characterization of fluid patterns using Fourier spectral (FS) and dynamical-systems (chaotic) techniques such as the recurrence map, correlation dimension (D2) and Hurst exponent (H). Four patterns were found (fingers, furrows, waterfall and smooth tooth) before annular flow was reached. The results indicate that the FS technique not is suitable for flow pattern characterization; and H only has the ability to indicate a possible pattern change. The best tool for indicating the pattern transitions and the inner coat liquid evolution was found to be recurrence maps and D2.  相似文献   
106.
This paper introduces a wavepacket-transform-based Gaussian beam method for solving the Schrödinger equation. We focus on addressing two computational issues of the Gaussian beam method: how to generate a Gaussian beam representation for general initial conditions and how to perform long time propagation for any finite period of time. To address the first question, we introduce fast Gaussian wavepacket transforms and develop on top of them an efficient initialization algorithm for general initial conditions. Based on this new initialization algorithm, we address the second question by reinitializing the beam representation when the beams become too wide. Numerical examples in one, two, and three dimensions demonstrate the efficiency and accuracy of the proposed algorithms. The methodology can be readily generalized to deal with other semi-classical quantum mechanical problems.  相似文献   
107.
We describe algorithms for polynomial factorization over the binary field , and their implementation. They allow polynomials of degree up to to be factored in about one day of CPU time, distributing the work on two processors.

  相似文献   

108.
A new heteronuclear decoupling mechanism under fast magic-angle spinning MAS is introduced. It is based on refocusing the coherences responsible for the dephase of low-gamma nuclei ((13)C, (15)N) transverse spin-polarization in the presence of strongly dipolar-coupled protons, and has the advantage that can be implemented by pulsed techniques, with all the benefits resulting from a reduced duty cycle compared with conventional decoupling by continuous rf irradiation. The decoupling efficiency of a simple rotor-synchronized Hahn-echo pulse train is analyzed both theoretically and experimentally. It was found that a substantial improvement in sensitivity and resolution can be achieved in compounds with small (1)H chemical shielding parameters even at moderate sample spinning, and some interesting applications are shown. It is also shown that much faster spinning frequencies, or alternative refocusing sequences, are needed for applications on rigid organic solids, i.e., in systems with larger (1)H chemical shifts.  相似文献   
109.
The magnetization under the spin-lattice relaxation and the nuclear magnetic resonance radiofrequency (RF) pulses is calculated for a signal RF pulse train and for a sequence of multiple RF pulse-trains. It is assumed that the transverse magnetization is zero when each RF pulse is applied. The result expressions can be grouped into two terms: a decay term, which is proportional to the initial magnetization M0, and a recovery term, which has no M0 dependence but strongly depends on the spin-lattice relaxation and the equilibrium magnetization Meq. In magnetic resonance pulse sequences using magnetization in transient state, the recovery term produces artifacts and can seriously degrade the function of the preparation sequence for slice selection, contrast weighting, phase encoding, etc. This work shows that the detrimental effect can be removed by signal averaging in an eliminative fashion. A novel fast data acquisition method for constructing the spin-lattice relaxation (T1) map is introduced. The method has two features: (i) By using eliminative averaging, the curve to fit the T1 value is a decay exponential function rather than a recovery one as in conventional techniques; therefore, the measurement of Meq is not required and the result is less susceptible to the accuracy of the inversion RF pulse. (ii) The decay exponential curve is sampled by using a sequence of multiple pulse-trains. An image is reconstructed from each train and represents a sample point of the curve. Hence a single imaging sequence can yield multiple sample points needed for fitting the T1 value in contrast to conventional techniques that require repeating the imaging sequence for various delay values but obtain only one sample point from each repetition.  相似文献   
110.
The purpose of this paper is to demonstrate that a fully balanced gradient echo technique (TrueFISP) can be used for microscopic experiments at high static magnetic field strengths. TrueFISP experiments were successfully performed on homogeneous and inhomogeneous objects at 11.75T. High-resolution TrueFISP images were obtained from phantoms, plants, formalin-fixed samples, and from an isolated beating rat heart with an in-plane resolution of 78 micro m and a slice thickness of 500 micro m. The signal-to-noise ratio (SNR) gain of TrueFISP compared to conventional gradient echo or spin echo sequences will allow faster acquisition times or an improvement in spatial resolution for microscopic experiments.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号