首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   143141篇
  免费   15340篇
  国内免费   13527篇
化学   123840篇
晶体学   1983篇
力学   3811篇
综合类   846篇
数学   17716篇
物理学   23812篇
  2024年   82篇
  2023年   645篇
  2022年   1620篇
  2021年   2028篇
  2020年   2740篇
  2019年   4229篇
  2018年   3857篇
  2017年   5048篇
  2016年   5484篇
  2015年   7245篇
  2014年   7895篇
  2013年   12677篇
  2012年   11139篇
  2011年   9512篇
  2010年   7916篇
  2009年   9225篇
  2008年   9753篇
  2007年   9441篇
  2006年   8497篇
  2005年   7535篇
  2004年   6718篇
  2003年   5812篇
  2002年   6923篇
  2001年   4061篇
  2000年   3824篇
  1999年   2998篇
  1998年   2228篇
  1997年   1746篇
  1996年   1506篇
  1995年   1456篇
  1994年   1292篇
  1993年   1049篇
  1992年   1017篇
  1991年   660篇
  1990年   552篇
  1989年   535篇
  1988年   399篇
  1987年   314篇
  1986年   288篇
  1985年   233篇
  1984年   245篇
  1983年   139篇
  1982年   212篇
  1981年   182篇
  1980年   203篇
  1979年   186篇
  1978年   175篇
  1977年   127篇
  1976年   112篇
  1973年   76篇
排序方式: 共有10000条查询结果,搜索用时 265 毫秒
71.
The current work utilizes three separate techniques to study the physical aging process in amorphous poly(ethylene furanoate) (PEF), which is a recently introduced engineering thermoplastic with enhanced properties compared to petroleum‐sourced poly(ethylene terephthalate). Differential scanning calorimetry aging experiments were conducted at multiple aging temperatures and times, and the resultant enthalpic recovery values compared to the theoretical maximum enthalpy loss evaluated from calculations involving extrapolation of the equilibrium liquid line. Density measurements reveal densification of the matrix for the aged versus unaged samples, and provide an estimate for the reduction in free volume for the aged samples. Complementary oxygen permeation and pressure‐decay sorption experiments provide independent verification of the free volume reduction mechanism for physical aging in glassy polymers. The current work provides the first detailed aging study for PEF. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 389–399  相似文献   
72.
《Physics letters. A》2019,383(17):2090-2092
In this paper, we have used Monte Carlo (MC) method to simulate and study the temperature and doping effects on the electric conductivity of fullerene (C60). The results show that the band gap has reduced by the doping and the charge carrier transport is facilitated from valence band to conduction band by the temperature where is touched a 300 K. In this case, the conductivity reached a value of 4×107Scm1. The electric conductivity of C60 can increase by the triphenylmethane dye crystal violet (CV) alkali metal to reach 4×103Scm1 at 303 K. Our results of MC simulation have a good agreement with those extracted from literature [10], [33].  相似文献   
73.
This paper deals with the Cauchy–Dirichlet problem for the fractional Cahn–Hilliard equation. The main results consist of global (in time) existence of weak solutions, characterization of parabolic smoothing effects (implying under proper condition eventual boundedness of trajectories), and convergence of each solution to a (single) equilibrium. In particular, to prove the convergence result, a variant of the so-called ?ojasiewicz–Simon inequality is provided for the fractional Dirichlet Laplacian and (possibly) non-analytic (but C1) nonlinearities.  相似文献   
74.
The hydrophobicity of silicone elastomers can compromise their utility in some biomaterials applications. Few effective processes exist to introduce hydrophilic groups onto a polysiloxane backbone and subsequently crosslink the material into elastomers. This problem can be overcome through the utilization of metal‐free click reactions between azidoalkylsilicones and alkynyl‐modified silicones and/or PEGs to both functionalize and crosslink silicone elastomers. Alkynyl‐functional PEG was clicked onto a fraction of the available azido groups of a functional polysiloxane, yielding azido reactive PDMS‐g‐PEG rake surfactants. The reactive polymers were then used to crosslink alkynyl‐terminated PDMS of different molecular weights. Using simple starting materials, this generic yet versatile method permits the preparation and characterization of a library of amphiphilic thermoset elastomers that vary in their composition, crosslink density, elasticity, hydrogel formation, and wettability. An appropriate balance of PEG length and crosslink density leads to a permanently highly wettable silicone elastomer that demonstrated very low levels of protein adsorption. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 1082–1093  相似文献   
75.
A reversibly cross‐linked epoxy resin with efficient reprocessing and intrinsic self‐healing was prepared from a diamine Diels‐Alder (DA) adduct cross‐linker and a commercial epoxy oligomer. The newly synthesized diamine cross‐linker, comprising a DA adduct of furan and maleimide moieties, can cure epoxy monomer/oligomer with thermal reversibility. The reversible transition between cross‐linked state and linear architecture endows the cured epoxy with rapid recyclability and repeated healability. The reversibly cross‐linked epoxy fundamentally behaves as typical thermosets at ambient conditions yet can be fast reprocessed at elevated temperature like thermoplastics. As a potential reversible adhesive, the epoxy polymer with adhesive strength values about 3 MPa showed full recovery after repeated fracture‐thermal healing processes. The methodology explored in this contribution provides new insights in modification of conventional engineering plastics as functional materials. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 2094–2103  相似文献   
76.
A new asymmetric Salamo‐based ligand H2L was synthesized using 3‐tertbutyl‐salicylaldehyde and 6‐methoxy‐2‐[O‐(1‐ethyloxyamide)]‐oxime‐1‐phenol. By adjusting the ratio of the ligand H2L and Cu (II), Co (II), and Ni (II) ions, mononuclear, dinuclear, and trinuclear transition metal (II) complexes, [Cu(L)], [{Co(L)}2], and [{Ni(L)(CH3COO)(CH3CH2OH)}2Ni] with the ligand H2L possessing completely different coordination modes were obtained, respectively. The optical spectra of ligand H2L and its Cu (II), Co (II) and Ni (II) complexes were investigated. The Cu (II) complex is a mononuclear structure, and the Cu (II) atom is tetracoordinated to form a planar quadrilateral structure. The Co (II) complex is dinuclear, and the two Co (II) atoms are pentacoordinated and have coordination geometries of distorted triangular bipyramid. The Ni (II) complex is a trinuclear structure, and the terminal and central Ni (II) atoms are all hexacoordinated, forming distorted octahedral geometries. Furthermore, optical properties including UV–Vis, IR, and fluorescence of the Cu (II), Co (II), and Ni (II) complexes were investigated. Finally, the antibacterial activities of the Cu (II), Co (II), and Ni (II) complexes were explored. According to the experimental results, the inhibitory effect was found to be enhanced with increasing concentrations of the Cu (II), Co (II), and Ni (II) complexes.  相似文献   
77.
New aromatic (co)polyesters containing pendant propargyloxy groups were synthesized by phase transfer‐catalyzed interfacial polycondensation of 5‐(propargyloxy)isophthaloyl chloride (P‐IPC) and various compositions of P‐IPC and isophthaloyl chloride with bisphenol A. FTIR and NMR spectroscopic data, respectively, revealed successful incorporation of pendant propargyloxy groups into (co)polyesters and formation of (co)polyesters with desired compositions. (Co)polyesters exhibited good solubility in common organic solvents such as chloroform, dichloromethane, and tetrahydrofuran and could be cast into transparent, flexible, and tough films from chloroform solution. Inherent viscosities and number average molecular weights of (co)polyesters were in the range 0.77–1.33 dL/g and 43,600–118,000 g/mol, respectively, indicating the achievement of reasonably high‐molecular weights. The 10% weight loss temperatures of (co)polyesters were in the range 390–420 °C, demonstrating their good thermal stability. (Co)polyesters exhibited Tg in the range 146–170 °C and Tg values decreased with increase in mol % incorporation of P‐IPC. The study of non‐isothermal curing by DSC indicated thermal crosslinking of (co)polyesters via propargyloxy groups. The utility of pendant propargyloxy group was demonstrated by post‐modification of the selected copolyester with 1‐(4‐azidobutyl)pyrene, 9‐(azidomethyl)anthracene, and azido‐terminated poly(ethyleneglycol) monomethyl ether via copper(I)‐catalyzed Huisgen 1,3‐dipolar cycloaddition reaction. FTIR and 1H NMR spectra confirmed that click reaction was quantitative. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 588–597  相似文献   
78.
ABSTRACT

QM(UB3LYP)/MM(AMBER) calculations were performed for the locations of the transition structure (TS) of the oxygen–oxygen (O–O) bond formation in the S4 state of the oxygen-evolving complex (OEC) of photosystem II (PSII). The natural orbital (NO) analysis of the broken-symmetry (BS) solutions was also performed to elucidate the nature of the chemical bonds at TS on the basis of several chemical indices defined by the occupation numbers of NO. The computational results revealed a concerted bond switching (CBS) mechanism for the oxygen–oxygen bond formation coupled with the one-electron transfer (OET) for water oxidation in OEC of PSII. The orbital interaction between the σ-HOMO of the Mn(IV)4–O(5) bond and the π*-LUMO of the Mn(V)1=O(6) bond plays an important role for the concerted O–O bond formation for water oxidation in the CaMn4O6 cluster of OEC of PSII. One electron transfer (OET) from the π-HOMO of the Mn(V)1=O(6) bond to the σ*-LUMO of the Mn(IV)4–O(5) bond occurs for the formation of electron transfer diradical, where the generated anion radical [Mn(IV)4–O(5)]-? part is relaxed to the ?Mn(III)4?…?O(5)- structure and the cation radical [O(6)=Mn(V)1]+ ? part is relaxed to the +O(6)–Mn(IV)1? structure because of the charge-spin separation for the electron-and hole-doped Mn–oxo bonds. Therefore, the local spins are responsible for the one-electron reductions of Mn(IV)4->Mn(III)4 and Mn(V)1->Mn(IV)1. On the other hand, the O(5)- and O(6)+ sites generated undergo the O–O bond formation in the CaMn4O6 cluster. The Ca(II) ion in the cubane- skeleton of the CaMn4O6 cluster assists the above orbital interactions by the lowering of the orbital energy levels of π*-LUMO of Mn(V)1=O(6) and σ*-LUMO of Mn(IV)4–O(5), indicating an important role of its Lewis acidity. Present CBS mechanism for the O–O bond formation coupled with one electron reductions of the high-valent Mn ions is different from the conventional radical coupling (RC) and acid-base (AB) mechanisms for water oxidation in artificial and native photosynthesis systems. The proton-coupled electron transfer (PC-OET) mechanism for the O–O bond formation is also touched in relation to the CBS-OET mechanism.  相似文献   
79.
In this work, we suggest a novel quadratic programming‐based algorithm to generate an arbitrage‐free call option surface. The empirical performance of the proposed method is evaluated using S&P 500 Index call options. Our results indicate that the proposed method provides a more precise fit to observed option prices than other alternative methodologies. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
80.
Functional, degradable polymers were synthesized via the copolymerization of vinyl acetate (VAc) and 2‐methylene‐1,3‐dioxepane (MDO) using a macro‐xanthate CTA, poly(N‐vinylpyrrolidone), resulting in the formation of amphiphilic block copolymers of poly(NVP)‐b‐poly(MDO‐co‐VAc). The behavior of the block copolymers in water was investigated and resulted in the formation of self‐assembled nanoparticles containing a hydrophobic core and a hydrophilic corona. The size of the resultant nanoparticles was able to be tuned with variation of the hydrophilic and hydrophobic segments of the core and corona by changing the incorporation of the macro‐CTA as well as the monomer composition in the copolymers, as observed by Dynamic Light Scattering, Static Light Scattering, and Transmission Electron Microscopy analyses. The concept was further applied to a VAc derivative monomer, vinyl bromobutanoate, to incorporate further functionalities such as fluorescent dithiomaleimide groups throughout the polymer backbone using azidation and “click” chemistry as postpolymerization tools to create fluorescently labeled nanoparticles. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 2699–2710  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号