首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   852篇
  免费   84篇
  国内免费   41篇
化学   659篇
综合类   7篇
数学   2篇
物理学   309篇
  2023年   1篇
  2021年   2篇
  2020年   1篇
  2019年   3篇
  2018年   4篇
  2017年   2篇
  2016年   9篇
  2015年   11篇
  2014年   5篇
  2013年   33篇
  2012年   87篇
  2011年   39篇
  2010年   38篇
  2009年   35篇
  2008年   32篇
  2007年   66篇
  2006年   53篇
  2005年   49篇
  2004年   90篇
  2003年   65篇
  2002年   56篇
  2001年   42篇
  2000年   25篇
  1999年   32篇
  1998年   17篇
  1997年   18篇
  1996年   27篇
  1995年   32篇
  1994年   22篇
  1993年   12篇
  1992年   16篇
  1991年   9篇
  1990年   6篇
  1989年   13篇
  1988年   7篇
  1987年   3篇
  1986年   6篇
  1985年   1篇
  1982年   2篇
  1981年   3篇
  1980年   1篇
  1976年   1篇
  1973年   1篇
排序方式: 共有977条查询结果,搜索用时 15 毫秒
901.
In recent years, knowledge of the different chemical forms of the elements has gained increasing importance. There has been significant progress in methods that hyphenate chromatographic separations with atomic spectrometry. These hyphenated methods can provide the most complete information on the species distribution and even structure. However, they can be lengthy, relatively costly and difficult to bring to the routine. On the other hand, it is important to remember that chromatographic techniques represent only a minor part of the separation procedures available and, in certain cases, the application of basic chemistry to sample treatments can give quantitative information about specific chemical forms. In this sense, non-chromatographic procedures can provide methods that offer sufficient information on the elemental speciation for a series of situations. Moreover, these non-chromatographic strategies can be less time consuming, more cost effective and available, and present competitive limits of detection. Thus, non-chromatographic speciation analysis continues to be a promising research area and has been applied to the development of several methodologies that facilitate this type of analytical approach. In view of their importance, the present work overviews and discusses different non-chromatographic methods as alternatives for the speciation analysis of clinical, environmental and food samples using atomic spectrometry for detection.  相似文献   
902.
砷和汞的顺序注射-蒸气发生原子吸收光谱测定   总被引:7,自引:0,他引:7  
本文建立了砷和汞的顺序注射 蒸气发生原子吸收光谱测定方法。在流动注射蒸气发生原子吸收光谱测定方法的基础上 ,采用汇流技术 ,通过两个微量注射泵和一个多位选择阀的计算机程控操作 ,实现待测组分与硼氢化钠间的强氧化还原反应及其气 液分离过程。与流动注射方法相比 ,进一步大幅度节省试剂消耗 ,显著提高分析的精度及长期稳定性。在 1 2 0·h- 1 的采样频率下汞和砷的测定精度RSD分别为 2 2 %和 1 4%,检出限分别为 0 1 5和 0 0 7μg·L- 1 。方法用于地球化学标准样品的分析 ,取得满意结果。  相似文献   
903.
强稳朝 《中国物理》2003,12(2):136-139
Solving Klein-Gordon equation with equal ring-shaped harmonic oscillator scalar and vector potentials, we obtain the exact normalized bound-state wavefunction and energy equation.  相似文献   
904.
We have obtained a k-quantum nonlinear Jaynes-Cummings model for two trapped ions interacting with laser beams resonant to the kth red side-band of the centre-of-mass mode, far from the Lamb-Dicke regime. The exact analytic solution shows the existence of quantum collapses and revivals of the occupation of two atoms.  相似文献   
905.
石墨炉原子吸收光谱法直接测定尿中痕量锰   总被引:6,自引:0,他引:6  
应用硝酸作基体改进剂 ,石墨炉原子吸收光谱法直接测定尿中痕量锰。方法简便、快速、准确 ,灵敏度高。方法的检出限为 0 .0 80 μg·L- 1,回收率为 97.2 %。对锰含量为 5 μg·L- 1的尿样测定 7次的相对标准偏差为 3.16%  相似文献   
906.
生态纺织品中重金属残留总量的测定   总被引:5,自引:0,他引:5  
1 前言为提高织物的穿着性能及人体健康水平而进行的生态纺织品开发越来越受到人们的重视[1] ,所采用的许多纺织整理剂开始关注安全无害、效果持久、性能稳定等特殊要求[2 ] ,尤其是因纺织品加工工艺而引入的各种重金属元素 ,在某些安全卫生检验或环境质量控制项目中已被列入严格限制使用的化合物之列[3 ] 。但就倡导绿色消费的角度而言 ,目前人们对纺织原料环境品质仍缺乏必要的控制 ,一些较有影响的环境标志产品也将注意力放在可释放的重金属残留问题上[3 ] 。本文试图在现有方法的基础上[4~ 8] ,针对生态纺织品对重金属的限量要求 ,通…  相似文献   
907.
流动注射分光光度法测定茶叶中锗含量   总被引:4,自引:0,他引:4  
有机锗具有提高人体免疫机能、降低血脂、抗癌及防癌、防衰老等多种功能。许多植物如人参、枸杞、茶叶、蘑菇中都含有有机锗 ,有些含锗食品国家已批准作为新资源性食品并引起人们的重视。锗的测定方法多采用原子吸收法[1 ] 和分光光度法[2~4] ,分光光度法具有显色速度快 ,水溶性好 ,灵敏度高等特点 ,但该法不能实现锗的快速自动检测。本文将流动注射与分光光度法联用 ,建立了一种流动注射分光光度法测定茶叶中有机锗含量的新方法。流动注射分析作为一种高效率的非色谱分离手段与多种仪器联用 ,显著提高了许多分析方法的选择性和灵敏度 ,该…  相似文献   
908.
白玉蜗牛微量元素的测定方法研究   总被引:1,自引:0,他引:1  
以高压硝化罐硝化样品,采用电感耦合等离子体原子发射光谱(ICP-AES)法和火焰原子吸收(AAS)法分别测定了白玉蜗牛中的Ca,Mg,Fe,Zn,Cu,Co六种微量元素的含量, 并对两种分析方法进行分析比较, 结果表明,ICP-AES法和AAS法测定的微量元素无显著性差异。 方法回收率在92.4%~103.0%之间,相对标准偏差均小于2.98%。 实验证明,白玉蜗牛含有丰富的有益微量元素,是一种营养价值极高的绿色食品。  相似文献   
909.
An automated on-line pre-reduction of arsenate, monomethylarsonate (MMA) and dimethylarsinate (DMA) using flow injection hydride generation atomic absorption spectrometry (FI-HGAAS) is feasible. The kinetics of pre-reduction and complexation depend strongly on the concentration of -cysteine and on the temperature in the following increasing order: inorganic As(V)<DMA<MMA. Arsenate is pre-reduced/complexed within less than 50 s at 70–100°C compared to 1 h at room temperature, while MMA and DMA require 1.5–2 min at 70–100°C and up to 1–2 h at room temperature. The characteristic masses and concentrations for 100 μl injections are 0.01 ng and 0.1 μg l−1 in integrated absorbance and 0.2 ng and 2 μg l−1 in peak height measurements, and the limits of detection are ca. 0.5 ng and 5 μg l−1, respectively. In a high-performance liquid chromatography (HPLC)–HGAAS system, the -cysteine complexes of inorganic As(III), MMA and DMA are best separated within 7 min by HPLC on a strongly acidic cation exchange column such as Spherisorb S SCX 120×4 mm (5 μm) with a mobile phase containing 12 mmol l−1 phosphate buffer (KH2PO4/H3PO4)–2.5 mmol l−1 -cysteine, pH 3.3–3.5. Upon dilution to -cysteine levels below 10 mmol l−1, which are compatible with HPLC separations, the DMA–cysteine complex is unstable on storage. No baseline separations are possible with anion exchange and reverse phase C18 HPLC columns. The limits of detection with 50 μl injections in peak area mode are ca. 0.5 ng and 10 μg l−1, respectively.  相似文献   
910.
Hashemi P  Bagheri S  Fat'hi MR 《Talanta》2005,68(1):72-78
An agarose-based anion exchanger (Q-Sepharose) was loaded with chromotropic acid (CTA) and used for column preconcentration and determination of copper by flame AAS. Preliminary experiments indicated that a sample pH of 5.7-6.5 is best suited for accumulation of copper and a 2.5 ml portion of a 0.02 mol l−1 HCl solution can efficiently desorb the analyte from the column. An incomplete factorial design was used for optimization of five different variables that affect recovery of copper. The results indicated that ionic strength, pH and sample volume variables are the most important effects, respectively. Hence, these variables and their possible interactions were studied more carefully. In optimized conditions, the column could tolerate up to 0.18 mol l−1 sodium nitrate in the matrix. A 5 ml portion of a 0.02 mol l−1 CTA was sufficient for loading of a 0.5 ml column prior to preconcentration of copper from a 150 ml sample solution. Matrix ions of Ca2+, Mg2+, Na+ and K+ and potentially interfering ions of Pb2+, Ni2+, Cd2+, Co2+, Zn2+ and Mn2+ with relatively high concentrations did not have any significant effect on the recovery of the analyte. A preconcentration factor of 60 and a detection limit of 1.0 μg l−1 was obtained for the determination of copper by the flame AAS method. A precision better than 2.5%, expressed as R.S.D., was also achieved. Application of the method to tap water and two different river water samples resulted in values well confirmed by direct determinations with ET-AAS.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号