首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3842篇
  免费   312篇
  国内免费   133篇
化学   4146篇
晶体学   6篇
力学   10篇
综合类   2篇
数学   4篇
物理学   119篇
  2023年   11篇
  2022年   17篇
  2021年   34篇
  2020年   68篇
  2019年   44篇
  2018年   64篇
  2017年   137篇
  2016年   176篇
  2015年   164篇
  2014年   151篇
  2013年   356篇
  2012年   165篇
  2011年   230篇
  2010年   245篇
  2009年   248篇
  2008年   252篇
  2007年   277篇
  2006年   256篇
  2005年   238篇
  2004年   235篇
  2003年   175篇
  2002年   144篇
  2001年   79篇
  2000年   75篇
  1999年   60篇
  1998年   55篇
  1997年   47篇
  1996年   43篇
  1995年   45篇
  1994年   46篇
  1993年   46篇
  1992年   46篇
  1991年   13篇
  1990年   10篇
  1989年   8篇
  1988年   9篇
  1987年   6篇
  1986年   4篇
  1985年   1篇
  1984年   3篇
  1983年   2篇
  1981年   1篇
  1980年   1篇
排序方式: 共有4287条查询结果,搜索用时 343 毫秒
41.
Poly(monoitaconates) containing octyl, decyl and dodecyl groups and random monoalkylitaconate-co-vinylpyrrolidone copolymers were studied by thermogravimetric analysis. Copolymers of mono-n-octylitaconate (MOI), mono-n-decylitaconate (MDI), and mono-n-dodecylitaconate (MDoI), respectively, with N-vinyl-2-pyrrolidone (VP) of different compositions were studied by dynamic thermogravimetric analysis. The thermal stability of the copolymers depends on the structure of the monoitaconate comonomer and on the composition of the copolymer The kinetic analysis of the degradation data shows that the thermal decomposition of these copolymers can be described by several kinetic orders depending on the copolymer and on the composition. The relative thermal stability of the copolymers increases as the VP content increases and as the length of the side chain of the itaconate increases, following the same trend as the flexibility of the copolymers in solution.  相似文献   
42.
In the reversible addition–fragmentation transfer (RAFT) copolymerization of two monomers, even with the simple terminal model, there are two kinds of macroradical and two kinds of polymeric RAFT agent with different R groups. Because the structure of the R group could exert a significant influence on the RAFT process, RAFT copolymerization may behave differently from RAFT homopolymerization. The RAFT copolymerization of methyl methacrylate (MMA) and styrene (St) in miniemulsion was investigated. The performance of the RAFT copolymerization of MMA/St in miniemulsion was found to be dependent on the feed monomer compositions. When St is dominant in the feed monomer composition, RAFT copolymerization is well controlled in the whole range of monomer conversion. However, when MMA is dominant, RAFT copolymerization may be, in some cases, out of control in the late stage of copolymerization, and characterized by a fast increase in the polydispersity index (PDI). The RAFT process was found to have little influence on composition evolution during copolymerization. The synthesis of the well‐defined gradient copolymers and poly[St‐b‐(St‐co‐MMA)] block copolymer by RAFT miniemulsion copolymerization was also demonstrated. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 6248–6258, 2004  相似文献   
43.
New Schiff bases of 2,4‐dihydroxybenzaldehyde with siloxane‐α,ω‐diamines having different numbers of siloxane units in the chain have been synthesized and characterized by spectroscopy, elemental and thermal analyses. These azomethines were found to form complexes readily with copper(II), nickel(II), cobalt(II), cadmium(II) and zinc(II). From IR and UV–Vis studies, the phenolic oxygen and imine nitrogen of the ligand were found to be the coordination sites. Thermogravimetric analysis (TGA) data indicate the chelates to be more stable than the corresponding ligands. The melting points increase with shortening of the siloxane segment from azomethine, as well as the result of complexation. The chelates obtained were covalently inserted in polymeric linear structures by polycondensation through the OH‐difunctionalized ligand with 1,3‐bis(carboxypropyl)tetramethyldisiloxane. Direct polycondensation, assisted either by acetic anhydride or N,N′‐dicyclohexylcarbodiimide as dehydrating agent and the complex 4‐(dimethylamino)pyridinium 4‐toluenesulfonate as catalyst, was used for the synthesis of these compound types. The structures of the polymers obtained were confirmed by IR, UV and 1H NMR. Characterization was undertaken by TGA, solubility tests and viscosity measurements. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
44.
Utilizing forward recoil spectrometry (FRES), we have determined the segregation isotherm which describes the interfacial excess zi* of diblock copolymers of poly (d8-styrene-b-2-vinylpyridine) (dPS-PVP) at the interface between the homopolymers PS and PVP as a function of ?, the volume fraction of diblock copolymer remaining in the host homopolymer. All the samples were analyzed after annealing at temperatures and times sufficient to achieve equilibrium segregation. The effect of the degree of polymerization of both the diblock copolymers and the host homopolymers on the segregation isotherm is investigated. When the degree of polymerization of the homopolymer is much larger than that of the diblock copolymer, the normalized interfacial excess (zi*/Rg), where Rg is the radius of gyration of an isolated block copolymer chain, is a universal function of that portion of the block copolymer chemical potential due to chain stretching. The existence of such a universal function is predicted by theory and its form is in good agreement with self-consistent mean field calculations. Using these results, one can predict important aspects of the block copolymer segregation (e.g., the saturation interfacial excess) without recourse to the time-consuming numerical calculations. © 1994 John Wiley & Sons, Inc.  相似文献   
45.
Sulfonic cation exchangers with two ion exchange group concentrations (0.5 and 2.4 mmol/g, samples A and B, respectively) were obtained by sulfonation of a porous styrene (S) and divinylbenzene (DVB) copolymer with chlorosulfonic acid. Strong thermal decomposition of the sulfonated copolymer A, accompanied by significant changes in its porous structure, starts at ca. 400°C. The char has no sulfonic groups. After heat treatment at 400°C in steam, a sorbent was obtained (yield 65%) that shows higher phenol sorption than the untreated sample when related to the bed volume. The chlorosulfonic derivatives of the initial copolymer were less thermally resistant than the sulfonic ones obtained by hydrolysis. Pyrolysis of the cation exchanger B, in its H+ and Ca2+ forms, was carried out at 900°C (yield of both chars close to 30%). By subsequent steam activation at 800°C to a 50% burn-off of the char, sorbents with well-developed, but distinctly different, porous structures were obtained. The activated char from the sulfonated copolymer in its hydrogen form was highly microporous and indicated an effective surface area of 1180 m2/g. However, because of a low contribution of mesopores, its ability to adsorb phenol from the liquid phase was not very high. The activated char from the calcium-doped copolymer, indicating a smaller surface area (580 m2/g) but characterized by a well-developed mesoporosity, was a better sorbent for phenol. © 1994 John Wiley & Sons, Inc.  相似文献   
46.
The kinetics of domain size equilibration were studied for asymmetric poly(ethylene‐alt‐propylene)‐b‐poly(dimethyl siloxane) (EPDMS) and polyisoprene‐b‐poly(dimethyl siloxane) (IDMS) block copolymers in the body‐centered cubic ordered phase. Small‐angle X‐ray scattering measurements of the principal peak position (q*) were made as a function of time after temperature jumps within the ordered state. The equilibration times were remarkably long, especially on cooling and for temperatures below 100 °C. For example, after a quench to 40 °C, q* for EPDMS had not fully equilibrated even after several weeks of annealing; IDMS required several days to equilibrate at the same temperature. In contrast, a lamella‐forming EPDMS sample was able to adjust q* within the timescale of the measurements (i.e., minutes) with both heating and cooling over the same temperature range. Measurements of tracer diffusion indicated that chain mobility was not the rate‐limiting step, although differences in mobility did account for the differences between EPDMS and IDMS. Rather, the limiting step was the required reduction in the number density of spheres on cooling; the disappearance of spheres, either by evaporation or by fusion, provided a large kinetic barrier. Lamellae, however, could adjust domain dimensions simply by local displacements of individual chains. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 715–724, 2003  相似文献   
47.
A combination of nitroxide‐mediated radical polymerization and living anionic polymerization was used to synthesize a series of well‐defined graft (co)polymers with “V‐shaped” and “Y‐shaped” branches. The polymer main chain is a copolymer of styrene and p‐chloromethylstyrene (PS‐co‐PCMS) prepared via nitroxide‐mediated radical polymerization. The V‐shaped branches were prepared through coupling reaction of polystyrene macromonomer, carrying 1,1‐diphenylethylene terminus, with polystyryllithium or polyisoprenyllithium. The Y‐shaped branches were prepared throughfurther polymerization initiated by the V‐shaped anions. The obtained branches, carrying a living anion at the middle (V‐shaped) or at the end of the third segment (Y‐shaped), were coupled in situ with pendent benzyl chloride of PS‐co‐PCMS to form the target graft (co)polymers. The purified graft (co)polymers were analyzed by size exclusion chromatography equipped with a multiangle light scattering detector and a viscometer. The result shows that the viscosities and radii of gyration of the branched polymers are remarkably smaller than those of linear polystyrene. In addition, V‐shaped product adopts a more compact conformation in dilute solution than the Y‐shaped analogy. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 4013–4025, 2007  相似文献   
48.
A series of new liquid crystalline homopolymers, copolymers, and block copolymers were polymerized from styrene‐macroinitiator ( SMi ) and methacrylates with pendent 4,4′‐bis(biphenyl)fluorene ( M1 ) and biphenyl‐4‐ylfluorene ( M2 ) groups through atom transfer radical polymerization (ATRP). The number‐average molecular weights (Mn) of polymers P1 ‐ P4 were 10,007, 14,852, 6,275, and 10,463 g mol?1 with polydispersity indices values of 1.21, 1.15, 1.31, and 1.22, respectively. All polymers exhibit the nematic phase. The thermal, mesogenic, and photoluminescent properties of all polymers were investigated. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 4564–4572, 2007  相似文献   
49.
A modular approach has been developed for the synthesis of rod–coil block copolymers involving the initial preparation of a macroinitiator based on the rod block followed by the growth of the coil segment with living free-radical procedures. The key feature of this strategy is the utilization of an alkoxyamine group from the beginning of the synthesis, which serves as a solubilizing group and ensures that each rod block contains a single initiating fragment. Using this approach permits block copolymers based on insoluble biphenyl ester oligomers to be conveniently prepared with coil segments that range from styrenes to acrylates to 1,3-dienes. The tendency of the rod segments to crystallize is strongly dependent on the weight fraction of the rod segment and the chemical nature of the coil segment. Rod–coil molecules containing at least 25–35 wt % polystyrene or poly(n-butyl acrylate) coil segments show a two-dimensional hexagonal arrangement of rod aggregates, as characterized by transmission electron microscopy and small-angle X-ray scattering. Polyisoprene block copolymers exhibit a lamellar microstructure with short rigid domains in which the rod units lie in an interdigitated smectic C arrangement. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 3640–3656, 2003  相似文献   
50.
A series of side‐chain liquid‐crystalline (LC) homopolymers of poly[6‐(4‐methoxy‐4′‐oxy‐azobenzene) hexyl methacrylate] with different degrees of polymerization were synthesized by atom transfer radical polymerization (ATRP), which were prepared with a wide range of number‐average molecular weights from 5.1 × 103 to 20.6 × 103 with narrow polydispersities of around 1.17. Thermal investigation showed that the homopolymers exhibit two mesophases, a smectic phase, and a nematic phase, and the phase‐transition temperatures of the homopolymers increase clearly with increasing molecular weights. A series of novel LC coil triblock copolymers with narrow polydispersities was synthesized by ATRP, and their thermotropic phase behavior was investigated with differential scanning calorimetry and polarized optical microscopy. The LC coil triblocks were designed to have an LC conformation of poly[6‐(4‐methoxy‐4′‐oxy‐azobenzene) hexyl methacrylate] with a wide range of molecular weights from 3.5 × 103 to 1.7 × 104 and the coil conformation of poly(ethylene glycol) (PEG) (number‐average molecular weight: 6000 or 12,000) segment. Their characterization was investigated with 1H NMR, Fourier transform infrared spectra, and gel permeation chromatography. Triblock copolymers exhibited a crystalline phase, a smectic phase, and a nematic phase. The phase‐transition temperatures from the smectic to nematic phase and from the nematic to isotropic phase increased, and the crystallization of PEG depressed with increasing molecular weight of the LC block. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 2854–2864, 2003  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号