全文获取类型
收费全文 | 2544篇 |
免费 | 92篇 |
国内免费 | 192篇 |
专业分类
化学 | 2638篇 |
晶体学 | 6篇 |
力学 | 5篇 |
综合类 | 12篇 |
数学 | 15篇 |
物理学 | 152篇 |
出版年
2024年 | 9篇 |
2023年 | 85篇 |
2022年 | 165篇 |
2021年 | 130篇 |
2020年 | 101篇 |
2019年 | 98篇 |
2018年 | 65篇 |
2017年 | 82篇 |
2016年 | 93篇 |
2015年 | 74篇 |
2014年 | 79篇 |
2013年 | 126篇 |
2012年 | 185篇 |
2011年 | 105篇 |
2010年 | 90篇 |
2009年 | 126篇 |
2008年 | 122篇 |
2007年 | 107篇 |
2006年 | 120篇 |
2005年 | 116篇 |
2004年 | 103篇 |
2003年 | 83篇 |
2002年 | 55篇 |
2001年 | 30篇 |
2000年 | 46篇 |
1999年 | 52篇 |
1998年 | 62篇 |
1997年 | 36篇 |
1996年 | 38篇 |
1995年 | 37篇 |
1994年 | 26篇 |
1993年 | 26篇 |
1992年 | 21篇 |
1991年 | 40篇 |
1990年 | 47篇 |
1989年 | 7篇 |
1988年 | 9篇 |
1987年 | 6篇 |
1986年 | 2篇 |
1985年 | 7篇 |
1984年 | 3篇 |
1982年 | 3篇 |
1981年 | 1篇 |
1980年 | 2篇 |
1978年 | 1篇 |
1977年 | 2篇 |
1975年 | 1篇 |
1974年 | 1篇 |
1972年 | 1篇 |
1971年 | 1篇 |
排序方式: 共有2828条查询结果,搜索用时 8 毫秒
101.
The antitumor drug, oxaliplatin, induces neuropathic pain, which is resistant to available analgesics, and novel mechanism-based therapies are being evaluated for this debilitating condition. Since activated microglia, impaired serotonergic and noradrenergic neurotransmission and overexpressed sodium channels are implicated in oxaliplatin-induced pain, this in vivo study assessed the effect of minocycline, a microglial activation inhibitor used alone or in combination with ambroxol, a sodium channel blocker, or duloxetine, a serotonin and noradrenaline reuptake inhibitor, on oxaliplatin-induced tactile allodynia and cold hyperalgesia. To induce neuropathic pain, a single dose (10 mg/kg) of intraperitoneal oxaliplatin was used. The mechanical and cold pain thresholds were assessed using mouse von Frey and cold plate tests, respectively. On the day of oxaliplatin administration, only duloxetine (30 mg/kg) and minocycline (100 mg/kg) used alone attenuated both tactile allodynia and cold hyperalgesia 1 h and 6 h after administration. Minocycline (50 mg/kg), duloxetine (10 mg/kg) and combined minocycline + duloxetine influenced only tactile allodynia. Seven days after oxaliplatin, tactile allodynia (but not cold hyperalgesia) was attenuated by minocycline (100 mg/kg), duloxetine (30 mg/kg) and combined minocycline and duloxetine. These results indicate a potential usefulness of minocycline used alone or combination with duloxetine in the treatment of oxaliplatin-induced pain. 相似文献
102.
Nilufar Z. Mamadalieva Fadia S. Youssef Hidayat Hussain Gokhan Zengin Adriano Mollica Nawal M. Al Musayeib Mohamed L. Ashour Bernhard Westermann Ludger A. Wessjohann 《Molecules (Basel, Switzerland)》2021,26(21)
The antioxidant and enzyme inhibitory potential of fifteen cycloartane-type triterpenes’ potentials were investigated using different assays. In the phosphomolybdenum method, cycloalpioside D (6) (4.05 mmol TEs/g) showed the highest activity. In 1,1-diphenyl-2-picrylhydrazyl (DPPH*) radical and 2,2′-azino-bis(3-ethylbenzothiazoline)-6-sulfonic acid (ABTS) cation radical scavenging assays, cycloorbicoside A-7-monoacetate (2) (5.03 mg TE/g) and cycloorbicoside B (10) (10.60 mg TE/g) displayed the highest activities, respectively. Oleanolic acid (14) (51.45 mg TE/g) and 3-O-β-d-xylopyranoside-(23R,24S)-16β,23;16α,24-diepoxycycloart-25(26)-en-3β,7β-diol 7-monoacetate (4) (13.25 mg TE/g) revealed the highest reducing power in cupric ion-reducing activity (CUPRAC) and ferric-reducing antioxidant power (FRAP) assays, respectively. In metal-chelating activity on ferrous ions, compound 2 displayed the highest activity estimated by 41.00 mg EDTAE/g (EDTA equivalents/g). The tested triterpenes showed promising AChE and BChE inhibitory potential with 3-O-β-d-xylopyranoside-(23R,24S)-16β,23;16α,24-diepoxycycloart-25(26)-en-3β,7β-diol 2′,3′,4′,7-tetraacetate (3), exhibiting the highest inhibitory activity as estimated from 5.64 and 5.19 mg GALAE/g (galantamine equivalent/g), respectively. Compound 2 displayed the most potent tyrosinase inhibitory activity (113.24 mg KAE/g (mg kojic acid equivalent/g)). Regarding α-amylase and α-glucosidase inhibition, 3-O-β-d-xylopyranoside-(23R,24S)-16β,23;16α,24-diepoxycycloart-25(26)-en-3β,7β-diol (5) (0.55 mmol ACAE/g) and compound 3 (25.18 mmol ACAE/g) exerted the highest activities, respectively. In silico studies focused on compounds 2, 6, and 7 as inhibitors of tyrosinase revealed that compound 2 displayed a good ranking score (−7.069 kcal/mole) and also that the ΔG free-binding energy was the highest among the three selected compounds. From the ADMET/TOPKAT prediction, it can be concluded that compounds 4 and 5 displayed the best pharmacokinetic and pharmacodynamic behavior, with considerable activity in most of the examined assays. 相似文献
103.
Coffee cherry is a rich source of chlorogenic acids (CGAs) and caffeine. In this study we examined the potential antioxidant activity and enzyme inhibitory effects of whole coffee cherries (WCC) and their two extracts on α-amylase, α-glucosidase and acetylcholinesterase (AChE) activities, which are targets for the control of diabetes and Alzheimer’s diseases. Whole coffee cherry extract 40% (WCCE1) is rich in chlorogenic acid compounds, consisting of a minimum of 40% major isomers, namely 3-caffeoylquinic acids, 4-caffeoylquinic acids, 5-caffeoylquinic acids, 3,4-dicaffeoylquinic acid, 3,5-dicaffeoylquinic acid, 4,5-dicaffeoylquinic acid, 4-feruloylquinc acid, and 5-feruloylquinc acid. Whole coffee cherry extract 70% (WCCE2) is rich in caffeine, with a minimum of 70%. WCCE1 inhibited the activities of digestive enzymes α-amylase and α-glucosidase, and WCCE2 inhibited acetylcholinesterase activities with their IC50 values of 1.74, 2.42, and 0.09 mg/mL, respectively. Multiple antioxidant assays—including DPPH, ABTS, FRAP, ORAC, HORAC, NORAC, and SORAC—demonstrated that WCCE1 has strong antioxidant activity. 相似文献
104.
Daria Kupczyk Renata Studziska Szymon Baumgart Rafa Bilski Tomasz Kosmalski Renata Koodziejska Alina Wo
niak 《Molecules (Basel, Switzerland)》2021,26(9)
Tumors are currently more and more common all over the world; hence, attempts are being made to explain the biochemical processes underlying their development. The search for new therapeutic pathways, with particular emphasis on enzymatic activity and its modulation regulating the level of glucocorticosteroids, may contribute to the development and implementation of new therapeutic options in the treatment process. Our research focuses on understanding the role of 11β-HSD1 and 11β-HSD2 as factors involved in the differentiation and proliferation of neoplastic cells. In this work, we obtained the 9 novel N-tert-butyl substituted 2-aminothiazol-4(5H)-one (pseudothiohydantoin) derivatives, differing in the substituents at C-5 of the thiazole ring. The inhibitory activity and selectivity of the obtained derivatives in relation to two isoforms of 11β-HSD were evaluated. The highest inhibitory activity for 11β-HSD1 showed compound 3h, containing the cyclohexane substituent at the 5-position of the thiazole ring in the spiro system (82.5% at a conc. 10 µM). On the other hand, the derivative 3f with the phenyl substituent at C-5 showed the highest inhibition of 11β-HSD2 (53.57% at a conc. of 10 µM). A low selectivity in the inhibition of 11β-HSD2 was observed but, unlike 18β-glycyrrhetinic acid, these compounds were found to inhibit the activity of 11β-HSD2 to a greater extent than 11β-HSD1, which makes them attractive for further research on their anti-cancer activity. 相似文献
105.
Sukanya Dej-adisai Ichwan Ridwan Rais Chatchai Wattanapiromsakul Thanet Pitakbut 《Molecules (Basel, Switzerland)》2021,26(19)
The aim of this research was to establish the constituents of Bauhinia pulla as anti-diabetic agents. A phytochemistry analysis was conducted by chromatographic and spectroscopic techniques. The alpha-glucosidase inhibitory assay screening resulted in the isolation of eight known compounds of quercetin, quercitrin, luteolin, 5-deoxyluteolin, 4-methyl ether isoliquiritigenin, 3,2′,4′-trihydroxy-4-methoxychalcone, stigmasterol and β-sitosterol. Ethanol leaf extracts showed potential effects, which led to a strong inhibitory activity of isolated quercetin at 138.95 µg/mL and 5.41 µg/mL of IC50, respectively. The docking confirmed that flavonoids and chalcones had the same potential binding sites and responsibilities for their activity. This study was the first report of Bauhinia pulla chemical constituents and its alpha-glucosidase inhibition. 相似文献
106.
107.
Eulogio J. Llorent-Martínez Pilar Ortega-Barrales Muhammad Zakariyyah Aumeeruddy Marcello Locatelli Adriano Mollica 《Analytical letters》2019,52(5):852-868
This study investigates into the pharmacological potential of three solvent extracts (ethyl acetate, methanol, and water) of two Ajuga species (Ajuga chamaepitys subsp. chia var. chia and Ajuga bombycina) based on their antioxidant activity and enzyme inhibitory effects along with establishing the phytochemical profile. Spectrophotometric and high-performance liquid chromatography–electrospray ionization–tandem mass spectrometry (HPLC–ESI–MSn) were used to determine the total and individual phytocompounds, respectively. Antioxidant potential was assessed using different assays such as DPPH, ABTS, CUPRAC, FRAP, phosphomolybdenum, and metal chelation. Enzyme inhibitory effects were studied against acetylcholinesterase, butyrylcholinesterase, tyrosinase, α-amylase, and α-glucosidase. The aqueous extract of both plants showed better ABTS scavenging, FRAP, and metal chelating activities. The methanol extracts displayed the highest tyrosinase inhibitory and antioxidant activity in the phosphomolybdenum assay while the ethyl acetate extracts of both plants showed better butyrylcholinesterase (BChE), α-amylase, and α-glucosidase inhibition. The total phenolic content was highest in the aqueous extract of A. chamaepitys while the methanolic extract of A. bombycina showed the highest flavonoid content. Identification by HPLC–ESI–MSn revealed the presence of some individual compounds including phenolic acids, flavonoids, iridoid glycosides, phenylethanoid glycosides, and other compounds. To conclude, both A. chamaepitys and A. bombycina can be considered as rich sources of phytocompounds to manage chronic diseases. 相似文献
108.
Roya Mohammadzadeh Kakhki 《Arabian Journal of Chemistry》2019,12(7):1783-1794
The unique properties of carbon fiber electrodes (CFEs) offer a number of particular advantages for their use in analytical applications. However, some pretreatment is usually necessary for the modification of the carbon surface. One of these methods is enzyme modification, that enzyme reactions in the surface of the electrode can be useful for the certain determinations. Also application of nanoparticles is very useful for modification and gives very interesting responses for the electrode in the determination of various analytes. Electrochemical oxidation of a carbon surface is one of the other methods for modification. With this work the morphology of the surface changes as well as increasing the coverage by various oxygen-containing functional groups. These groups can then interact and bind with other species introduced to the surface. The modification of the surface of carbon fiber electrodes is an interesting topic with many applications in the fields of analytical chemistry, environmental and health science, fuel cell and biofuel cell and many others. In this review article we discussed about the various modification methods for carbon fiber electrodes and applications of these CFEs. 相似文献
109.
Masaya Kobayashi Takeo Tomita Kazuo Shin‐ya Makoto Nishiyama Tomohisa Kuzuyama 《Angewandte Chemie (Weinheim an der Bergstrasse, Germany)》2019,131(38):13483-13487
Carquinostatin A (CQS), a potent neuroprotective substance, is a unique carbazole alkaloid with both an ortho‐quinone function and an isoprenoid moiety. We identified the entire gene cluster responsible for CQS biosynthesis in Streptomyces exfoliatus through heterologous production of CQS and gene deletion. Biochemical characterization of seven CQS biosynthetic gene products (CqsB1–7) established the total biosynthetic pathway of CQS. Reconstitution of CqsB1 and CqsB2 showed that the synthesis of the carbazole skeleton involves CqsB1‐catalyzed decarboxylative condensation of an α‐hydroxyl‐β‐keto acid intermediate with 3‐hydroxybutyryl‐ACP followed by CqsB2‐catalyzed oxidative cyclization. Based on crystal structures and mutagenesis‐based biochemical assays, a detailed mechanism for the unique deprotonation‐initiated cyclization catalyzed by CqsB2 is proposed. Finally, analysis of the substrate specificity of the biosynthetic enzymes led to the production of novel carbazoles. 相似文献
110.
Muhammad Zafar Irshad Khan Syeda Saniya Zahra Madiha Ahmed Humaira Fatima Bushra Mirza Ihsan-ul Haq 《Natural product research》2019,33(14):2099-2104
Ipomoea carnea Jacq. is an important folklore medicinal plant, assessed for its underexplored biological potential. Antioxidant, cytotoxic, antiproliferative and polyphenolic profile of whole plant was evaluated using various techniques. Maximum extract recovery (29% w/w), phenolic [13.54 ± 0.27 μg GAE/mg dry weight (DW)] and flavonoid (2.11 ± 0.10 μg QE /mg DW) content were recorded in methanol-distilled water (1:1) flower extract. HPLC-DAD analysis quantified substantial amount of six different polyphenols ranging from 0.081 to 37.95 μg/mg extract. Maximum total antioxidant and reducing potential were documented in methanol-distilled water and acetone-distilled water flower extracts (42.62 ± 0.47 and 24.38 ± 0.39 μg AAE/mg DW) respectively. Ethanol-chloroform root extract manifested highest free radical scavenging (IC50 of 61.22 μg/mL) while 94.64% of the extracts showed cytotoxicity against brine shrimps. Ethanol leaf extract exhibited remarkable activity against THP-1 cell line (IC50 = 8 ± 0.05 μg/mL) and protein kinases (31 mm phenotype bald zone). 相似文献