首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   914篇
  免费   26篇
  国内免费   49篇
化学   739篇
晶体学   5篇
力学   53篇
综合类   2篇
数学   12篇
物理学   178篇
  2024年   1篇
  2023年   6篇
  2022年   11篇
  2021年   5篇
  2020年   10篇
  2019年   10篇
  2018年   12篇
  2017年   30篇
  2016年   34篇
  2015年   22篇
  2014年   29篇
  2013年   108篇
  2012年   29篇
  2011年   33篇
  2010年   39篇
  2009年   46篇
  2008年   49篇
  2007年   38篇
  2006年   59篇
  2005年   45篇
  2004年   50篇
  2003年   50篇
  2002年   36篇
  2001年   30篇
  2000年   30篇
  1999年   35篇
  1998年   29篇
  1997年   27篇
  1996年   13篇
  1995年   10篇
  1994年   21篇
  1993年   7篇
  1992年   13篇
  1991年   4篇
  1990年   2篇
  1988年   1篇
  1987年   3篇
  1986年   1篇
  1985年   5篇
  1984年   2篇
  1982年   2篇
  1981年   1篇
  1979年   1篇
排序方式: 共有989条查询结果,搜索用时 0 毫秒
941.
The subject of this paper is inspired by microphase-separated copolymer melts in which a small-scale structure is present inside one of the phases of a large-scale structure. Such a situation can arise in a diblock copolymer melt, if one of the blocks of the diblock is in itself a multiblock copolymer or a comb copolymer. Due to the presence of the large-scale structure, the chains are stretched. The aim of this paper is to investigate the influence of this chain stretching on the formation of the small-scale structure. To gain insight we study infinite melts of infinitely long copolymer chains that are subjected to a stretching force. For melts of monodisperse multiblock copolymers we find that the stretching destabilizes the homogeneous phase. If the stretching is strong, the lamellar structure is the only stable structure. The periodicity increases with the degree of stretching. For melts of monodisperse comb copolymers the chain stretching has no influence on the stability of the homogeneous phase. If the stretching is strong, the lamellar structure and the hexagonal structure are the only stable structures. The periodicity is independent of the degree of stretching. For the multiblock copolymer we investigated the influence of block length polydispersity. For small polydispersity the period of the structure increases monotonically with the degree of stretching. For intermediate polydispersity, the period initially decreases before it starts to increase. For large polydispersity, the mean-field period at the spinodal is infinite, becoming finite once the stretching force exceeds some critical value. For very large polydispersity the mean-field period at the spinodal remains infinite for any value of the stretching force. Received: 14 February 2002 / Accepted: 24 March 2003 / Published online: 29 April 2003 RID="a" ID="a"e-mail: hindrik.angerman@abp.nl  相似文献   
942.
In this paper the Martin-Siggia-Rose (MSR) functional integral representation is used for the study of the Langevin dynamics of a polymer melt in terms of collective variables: mass density and response field density. The resulting generating functional (GF) takes into account fluctuations around the random phase approximation (RPA) up to an arbitrary order. The set of equations for the correlation and response functions is derived. It is generally shown that for cases whenever the fluctuation-dissipation theorem (FDT) holds we arrive at equations similar to those derived by Mori-Zwanzig. The case when FDT in the glassy phase is violated is also qualitatively considered and it is shown that this results in a smearing out of the ideal glass transition. The memory kernel is specified for the ideal glass transition as a sum of all “water-melon” diagrams. For the Gaussian chain model the explicit expression for the memory kernel was obtained and discussed in a qualitative link to the mode-coupling equation. Received: 9 January 1998 / Revised: 24 April 1998 / Accepted: 2 July 1998  相似文献   
943.
In this work the effect of swelling and temperature on the resistivity of highly carbon black filled elastomers under strain is investigated. This work shows that swelling, even to a modest extent of less than 10%, causes a marked increase in the electrical resistivity. The effect of a linear expansion due to swelling is much more marked than an equivalent linear tensile extension on the electrical resistivity. The increase in electrical resistivity with swelling is also much greater than the increase due to a reduction in the volume fraction of the carbon black alone. The increase in resistivity depends somewhat upon the chemical nature of the swelling agent. There is a relatively small effect of temperature induced volume change on resistivity, contrasting markedly with the large effect of a volume increase due to swelling. These observations suggest that on swelling there is a preferential migration of the solvent to the rubber/filler interfaces. This will push the carbon black aggregates apart and lead to a dramatic increase in the resistivity across the interface. There are also indications that at elevated temperatures the filler/rubber interactions are reduced. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 2161–2167, 2004  相似文献   
944.
945.
The saturation swelling behavior of styrene and acrylonitrile (SAN) copolymer particles with a styrene (St) and acrylonitrile (AN) comonomer mixture was investigated experimentally. The effects of the copolymer composition and the compositional inhomogeneity in SAN Copolymer particles on their swelling behavior were examined. The experimental results show that both the copolymer composition and the compositional inhomogeneity in SAN copolymer particles have little or no influence on the swellability of SAN copolymer particles with a St and AN comonomer mixture, as long as the weight fraction of AN monomer units in SAN copolymer particles is less than a certain value between 0.6 and 0.8. With increasing AN content in the copolymer particles beyond this value, however, the swellability of SAN copolymer particles gradually decreases. Semiempirical equations are proposed, which correlate the saturation concentration of each monomer in SAN copolymer particles as a function of the comonomer composition in the monomer droplets and the overall copolymer composition in SAN copolymer particles. © 1994 John Wiley & Sons, Inc.  相似文献   
946.
We analyze existence and asymptotic behavior of a system of semilinear diffusion‐reaction equations that arises in the modeling of the mitochondrial swelling process. The model itself expands previous work in which the mitochondria were assumed to be stationary, whereas now their movement is modeled by linear diffusion. While in the previous model certain formal structural conditions were required for the rate functions describing the swelling process, we show that these are not required in the extended model. Numerical simulations are included to visualize the solutions of the new model and to compare them with the solutions of the previous model.  相似文献   
947.
Monodispersed polymeric microcapsules loaded with CO2 solvents or chelating agents were produced by capillary microfluidics by photopolymerisation of three different UV curable materials, 1,6-hexanediol diacrylate (HDDA), Norland Optical Adhesive (NOA) 81, and Semicosil® 949 UV A/B (PDMS). Polymerization of HDDA and NOA 81 started after exposure to UVA light for 5 s and was completed within a minute, as confirmed by continuous FT-IR. Corrosive aqueous solutions of tetraethylenepentamine and diisopropyl iminodiacetic acid were encapsulated with 100% efficiency into poly(HDDA) and cured NOA81 shells without any leakage during prolonged storage. Poly(HDDA) shells were mechanically more stable than cured NOA81 and PDMS shells and resistant to drying-induced shell buckling. NOA81 and PDMS capsules underwent morphological changes during freeze drying leading to the formation of dimpled and crescent-moon-shaped particles, respectively. The storage stability in a hypotonic solution and buckling resistance of PDMS shells were significantly improved by embedding carbon-based nanomaterials into PDMS matrix. The incorporation of 0.5 wt% multi-walled carbon nanotubes into PDMS matrix led to an increase in a Shore A hardness from 1.6 to 2.3. A uniform distribution of MWCNTs in the polymer network was confirmed by XRD. All fabricated shells were thermally stable up to the temperature of 300°C.  相似文献   
948.
To provide evidence for previously proposed assumptions concerning starch gelatinization sub-mechanisms, a more detailed investigation was carried out using multiscale analysis of a starch type selected for its marked difference. Tapioca starch was chosen due to its cohesive/springy properties and its growing use in the food industry. Time-domain nuclear magnetic resonance (TD-NMR) was used to investigate the leaching of material, water absorption and crystallite melting in hydrated tapioca starch (45%). The interpretation of T2 mass intensity evolutions, especially those of the (intra- and extra-granular) aqueous phases, was discussed drawing on complementary techniques such as microscopy, Rapid Visco Analyser (RVA), differential scanning calorimetry (DSC) and swelling factor (SF) and solubility index (SI) measurements. Results show that the T2 assignments usually proposed in the literature are dependent on starch origin. The differences in T2 evolutions (value and mass intensity) observed between wheat and tapioca starches at intermediate hydration levels could be linked to the different gelatinization behaviour of tapioca starch involving the latter's higher granule rupture level, higher gelatinization temperature and greater swelling power above its gelatinization temperature.  相似文献   
949.
In this work, hydrophobic polyurethane foam was prepared using hy-drosilicone oil-grafted polybutadiene as soft segment via foaming technology. It was found that the hydrophobic polyurethane foams exhibited good hydrophobic capability and were regenerated easily. Of great interest, the hydrophobic polyurethane foams expand in contact with the oils. This indicates that the process of sorption by the hydrophobic polyurethane foams involves both the filling of the pores with oils and the absorption of oils by the polymer regions (polyurethane elastomer skeleton), and the adsorption capacity of the hydrophobic polyurethane foams can be enhanced by the swelling of the polyurethane elastomer skeleton. We can use this finding to improve the adsorption capacity of the hydrophobic polyurethane foams without merely changing the porosity. The effect of the swelling property of the hydrophobic polyurethane foams on the sorption capacity was further investigated. The results suggest that the hydrophobic polyurethane foams are promising in the application of oil spill recovery.  相似文献   
950.
Thermally sensitive hydrogels of poly[N-isopropylacrylamide (NIPA)-co-acrylic(AA)] hydrogels with N,N-methylene bisacrylamide (BIS) as crosslinker have been synthesised via a two-step procedure in which, the initial polymerisation is conducted for various times at 18 °C, this step being followed by polymerisation for one fixed time at −22 °C. The gravimetrically determined rates of swelling/deswelling for these materials termed “cryogels” prepared by this two-step polymerisation are much higher than those for the same type of hydrogel prepared via conventional methods (30 °C for 24 h). For example the time for the former xerogel to take up 70% of its final water content at 25 °C is just 18 min, compared with a time 300 min for the latter to attain the same uptake of water. During deswelling (shrinking) at 50 °C, which is above the lower critical temperature, the hydrogel loses 60 and 90 wt.% water in 1 and 10 min respectively, compared to a timescale for the corresponding crosslinked copolymers prepared by conventional methods of about 100 min for 50 wt.% water loss. A third type of hydrogel was made by a cold treatment (CT), for which the hydrogel prepared by conventional polymerisation was stored in the frozen state. The swelling rate of these CT xerogels was the same as that for xerogels prepared by conventional polymerisation, but the deswelling rate of the former was higher than that of the latter; for example, during deswelling, a loss of 90% water is attained within a few minutes.Scanning electron microscopy, digital photographs and flotation experiments together with swelling ratio studies reveal that the polymeric network of cryogel produced by the two-step polymerisation method is characterised by an open structure with more pores and higher swelling ratio but lower mechanical strength compared to the conventional hydrogels. The polymerisation was taking place on moderate freezing condition and the hydrogel was stored in a frozen state and subsequent thawing of polymer to be very useful the acceleration the response rate of this kind hydrogels. Such rapid response hydrogels have potential applications in separation and drug release technologies for example.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号