首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   178篇
  免费   27篇
  国内免费   28篇
化学   97篇
晶体学   1篇
综合类   8篇
数学   105篇
物理学   22篇
  2023年   1篇
  2022年   4篇
  2021年   8篇
  2020年   2篇
  2019年   5篇
  2017年   4篇
  2016年   6篇
  2015年   8篇
  2014年   7篇
  2013年   16篇
  2012年   7篇
  2011年   9篇
  2010年   3篇
  2009年   10篇
  2008年   14篇
  2007年   13篇
  2006年   19篇
  2005年   10篇
  2004年   14篇
  2003年   2篇
  2002年   7篇
  2001年   7篇
  2000年   12篇
  1999年   5篇
  1998年   5篇
  1997年   4篇
  1996年   5篇
  1995年   4篇
  1994年   4篇
  1992年   2篇
  1991年   1篇
  1990年   2篇
  1989年   2篇
  1988年   1篇
  1987年   1篇
  1985年   2篇
  1984年   2篇
  1982年   1篇
  1981年   1篇
  1979年   1篇
  1977年   1篇
  1974年   1篇
排序方式: 共有233条查询结果,搜索用时 62 毫秒
231.
Two dendritic block copolymers with the same contents of PPO and PEO but different branches and blocks were synthesized by anion polymerization. Their aggregation behavior and aggregation morphology were investigated by steady-state fluorescence and transmission electron microscopy. For SD64 copolymer with PPO-PEO diblock branch, it can be proved that only intermolecular aggregates are formed, the aggregation number and aggregation diameter are increased with concentration. Whereas for SD343 dendritic copolymer with PPO-PEO-PPO triblock branch, hydrophobic PPO chains located on the edge of SD343 copolymers can associate within the same polymer chain and also between different polymer chains, so the aggregates were inclined to change from intramolecular micelles to intermolecular clusters with concentration increasing.  相似文献   
232.
本文利用绝热近似方法和精确对角化方法研究三量子比特Dicke模型中的纠缠动力学.处于两种典型的纠缠态GHZ态和W态上的量子比特在时间演化过程中与辐射光场发生强耦合作用,在各种子系统间产生纠缠,通过分析这些纠缠的演化特性发现初始GHZ态的三体纠缠鲁棒性比W态强,这与旋波近似结论一致.与旋波近似下结果不同的是,两种态中任意...  相似文献   
233.
Considering that practically all reactions that involve nucleotides also involve metal ions, it is evident that the coordination chemistry of nucleotides and their derivatives is an essential corner stone of biological inorganic chemistry. Nucleotides are either directly or indirectly involved in all processes occurring in Nature. It is therefore no surprise that the constituents of nucleotides have been chemically altered—that is, at the nucleobase residue, the sugar moiety, and also at the phosphate group, often with the aim of discovering medically useful compounds. Among such derivatives are acyclic nucleoside phosphonates (ANPs), where the sugar moiety has been replaced by an aliphatic chain (often also containing an ether oxygen atom) and the phosphate group has been replaced by a phosphonate carrying a carbon–phosphorus bond to make the compounds less hydrolysis-sensitive. Several of these ANPs show antiviral activity, and some of them are nowadays used as drugs. The antiviral activity results from the incorporation of the ANPs into the growing nucleic acid chain—i.e., polymerases accept the ANPs as substrates, leading to chain termination because of the missing 3′-hydroxyl group. We have tried in this review to describe the coordination chemistry (mainly) of the adenine nucleotides AMP and ATP and whenever possible to compare it with that of the dianion of 9-[2-(phosphonomethoxy)ethyl]adenine (PMEA2− = adenine(N9)-CH2-CH2-O-CH2-PO32) [or its diphosphate (PMEApp4−)] as a representative of the ANPs. Why is PMEApp4− a better substrate for polymerases than ATP4−? There are three reasons: (i) PMEA2− with its anti-like conformation (like AMP2−) fits well into the active site of the enzyme. (ii) The phosphonate group has an enhanced metal ion affinity because of its increased basicity. (iii) The ether oxygen forms a 5-membered chelate with the neighboring phosphonate and favors thus coordination at the Pα group. Research on ANPs containing a purine residue revealed that the kind and position of the substituent at C2 or C6 has a significant influence on the biological activity. For example, the shift of the (C6)NH2 group in PMEA to the C2 position leads to 9-[2-(phosphonomethoxy)ethyl]-2-aminopurine (PME2AP), an isomer with only a moderate antiviral activity. Removal of (C6)NH2 favors N7 coordination, e.g., of Cu2+, whereas the ether O atom binding of Cu2+ in PMEA facilitates N3 coordination via adjacent 5- and 7-membered chelates, giving rise to a Cu(PMEA)cl/O/N3 isomer. If the metal ions (M2+) are M(α,β)-M(γ)-coordinated at a triphosphate chain, transphosphorylation occurs (kinases, etc.), whereas metal ion binding in a M(α)-M(β,γ)-type fashion is relevant for polymerases. It may be noted that with diphosphorylated PMEA, (PMEApp4−), the M(α)-M(β,γ) binding is favored because of the formation of the 5-membered chelate involving the ether O atom (see above). The self-association tendency of purines leads to the formation of dimeric [M2(ATP)]2(OH) stacks, which occur in low concentration and where one half of the molecule undergoes the dephosphorylation reaction and the other half stabilizes the structure—i.e., acts as the “enzyme” by bridging the two ATPs. In accord herewith, one may enhance the reaction rate by adding AMP2− to the [Cu2(ATP)]2(OH) solution, as this leads to the formation of mixed stacked Cu3(ATP)(AMP)(OH) species, in which AMP2− takes over the structuring role, while the other “half” of the molecule undergoes dephosphorylation. It may be added that Cu3(ATP)(PMEA) or better Cu3(ATP)(PMEA)(OH) is even a more reactive species than Cu3(ATP)(AMP)(OH). – The matrix-assisted self-association and its significance for cell organelles with high ATP concentrations is summarized and discussed, as is, e.g., the effect of tryptophanate (Trp), which leads to the formation of intramolecular stacks in M(ATP)(Trp)3− complexes (formation degree about 75%). Furthermore, it is well-known that in the active-site cavities of enzymes the dielectric constant, compared with bulk water, is reduced; therefore, we have summarized and discussed the effect of a change in solvent polarity on the stability and structure of binary and ternary complexes: Opposite effects on charged O sites and neutral N sites are observed, and this leads to interesting insights.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号