首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5811篇
  免费   933篇
  国内免费   1302篇
化学   5501篇
晶体学   125篇
力学   357篇
综合类   88篇
数学   214篇
物理学   1761篇
  2024年   15篇
  2023年   99篇
  2022年   248篇
  2021年   427篇
  2020年   327篇
  2019年   273篇
  2018年   228篇
  2017年   314篇
  2016年   383篇
  2015年   346篇
  2014年   444篇
  2013年   639篇
  2012年   448篇
  2011年   479篇
  2010年   308篇
  2009年   420篇
  2008年   416篇
  2007年   346篇
  2006年   297篇
  2005年   265篇
  2004年   230篇
  2003年   178篇
  2002年   138篇
  2001年   99篇
  2000年   86篇
  1999年   83篇
  1998年   74篇
  1997年   69篇
  1996年   43篇
  1995年   38篇
  1994年   30篇
  1993年   52篇
  1992年   43篇
  1991年   25篇
  1990年   16篇
  1989年   20篇
  1988年   26篇
  1987年   12篇
  1986年   10篇
  1985年   15篇
  1984年   6篇
  1983年   6篇
  1982年   4篇
  1981年   4篇
  1980年   2篇
  1979年   6篇
  1973年   2篇
  1971年   2篇
  1959年   1篇
  1957年   1篇
排序方式: 共有8046条查询结果,搜索用时 31 毫秒
181.
A series of fluorenyl-containing sulfonated poly(aryl ether ether ketone ketone)s (SPFEEKK) were synthesized via aromatic nucleophilic substitution polymerization. The sulfonation content (SC) was controlled by the feed ratios of sulfonated and nonsulfonated monomers. Flexible and strong membranes in the sulfonic acid form were obtained from cast membranes in the sodium salt forms by treatment with acid. The thermal properties, water uptake, swelling ratio, water state, oxidative stability, proton conductivity and methanol permeability were investigated. All the polymers had proton conductivities greater than 1 × 10−2 S/cm at room temperature, and the conductivity values of m-SPFEEKK-80 and p-SPFEEKK-80 were up to 1.86 × 10−1 and 1.78 × 10−1 S/cm at 100 °C. This series of polymers also possessed good dimensional stability in water and low methanol crossover.  相似文献   
182.
The optimisation of ICPMS collision/reaction cell conditions for the simultaneous analysis of arsenic and selenium is described. A mixture of 3.8 mL min−1 of H2 and 0.5 mL min−1 of He was found to be suitable for the removal of both ArAr+ and ArCl+ interferences. Detection limits down to 30 ng (element) L−1 in total analysis, and between 81 and 230 ng (element) L−1 in speciation analysis were achieved in chloride matrix (1 g L−1 NaCl). After validation, the method was applied to commercially available mineral waters.  相似文献   
183.
184.
A finite volume cell‐centered Lagrangian hydrodynamics approach, formulated in Cartesian frame, is presented for solving elasto‐plastic response of solids in general unstructured grids. Because solid materials can sustain significant shear deformation, evolution equations for stress and strain fields are solved in addition to mass, momentum, and energy conservation laws. The total stress is split into deviatoric shear stress and dilatational components. The dilatational response of the material is modeled using the Mie‐Grüneisen equation of state. A predicted trial elastic deviatoric stress state is evolved assuming a pure elastic deformation in accordance with the hypo‐elastic stress‐strain relation. The evolution equations are advanced in time by constructing vertex velocity and corner traction force vectors using multi‐dimensional Riemann solutions erected at mesh vertices. Conservation of momentum and total energy along with the increase in entropy principle are invoked for computing these quantities at the vertices. Final state of deviatoric stress is effected via radial return algorithm based on the J‐2 von Mises yield condition. The scheme presented in this work is second‐order accurate both in space and time. The suitability of the scheme is evinced by solving one‐ and two‐dimensional benchmark problems both in structured grids and in unstructured grids with polygonal cells. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
185.
This work uses a simple “grafting through” approach in the preparation of anhydrous poly(vinylidene fluoride) (PVDF)‐g‐PVTri polymer electrolyte membranes (PEMs). Alkaline‐treated PVDF was used as a macromolecule in conjunction with vinyltriazole in the graft copolymerization. The obtained polymer was subsequently doped with triflic acid (TA) at different stoichiometric ratios with respect to triazole units and the anhydrous PEMs (PVDF‐g‐PVTri‐(TA)x) were prepared. All samples were characterized by FTIR and 1H NMR. The composition of PVDF‐g‐PVTri was determined by energy dispersive spectroscopy. Thermal properties of the membranes were examined by thermogravimetric analysis and differential scanning calorimetry. The surface roughness and morphology of the membranes were studied using atomic force microscopy, X‐ray diffraction, and scanning electron microscopy. PVDF‐g‐PVTri‐(TA)3 (C3‐TA3) with a degree of grafting of 47.22% showed a maximum proton conductivity of 0.09 S cm?1 at 150 °C and anhydrous conditions. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 1885–1897  相似文献   
186.
187.
188.
Cu2ZnSnS4 kesterite nanoparticles (CZTS) with a particle diameter of 10–20 nm are prepared by a polyol-mediated synthesis with diethylene glycol as the liquid phase. The polyol – a high-boiling multidentate alcohol − allows controlling the particle size and agglomeration as well as preparing readily crystalline nanoparticles. The as-prepared kesterite nanoparticles exhibit an overall composition of Cu1.56Zn1.29Sn1.16S4.59 and a band gap of 1.37 eV. As a first test, thin-film solar cells are manufactured after layer deposition of the as-prepared CZTS nanoparticles and conversion to Cu2ZnSn(S,Se)4 (CZTSSe) via gas-phase selenization. The volume increase of about 15% due to the CZTS-to-CZTSSe conversion supports the formation of a dense layer, reduces the interparticulate surfaces and leads to a reduction of the band gap to 1.14 eV. The chemical composition of the as-prepared CZTS nanoparticles and of the deposited CZTSSe thin film prior and after selenization are studied in detail by energy-dispersive X-ray spectroscopy, Raman spectroscopy and X-ray fluorescence analysis. All these methods confirm the intended copper-poor and zinc-/tin-rich CZTS/CZTSSe composition. The resulting thin-film solar cells show an open-circuit voltage of 247.3 mV, a short-circuit current density of 21.3 mA/cm2, a fill factor of 41.1% and a power-conversion efficiency of 2.2%.  相似文献   
189.
A novel methodology was implemented in the present study to concurrently control power conversion efficiency (η) and durability (D) of co-sensitized dye solar cells. Applying response surface methodology (RSM) and Desirability Function (DF), the main influential assembling (dye volume ratio and anti-aggregation agent concentration) and operational (performance temperature) parameters were systematically changed to probe their main and interactive effects on the η and D responses. Individual optimization based on RSM elucidated that D can be solely controlled by changing the ratio of vat-based organic photosensitizers, whereas η takes both effects of dye volume ratio and anti-aggregation concentration into account. Among the studied factors, the performance temperature played the most vital role in η and D regulation. In particular, however, multi-objective optimization by DF explored the degree to which one should be careful about manipulation of assembling and operational parameters in the way maximization of performance of a co-sensitized dye solar cell.  相似文献   
190.
We demonstrate homogeneous and uniform liquid crystal (LC) alignment on poly(vinylidene fluoride-trifluoroethylene) [PVDF-TrFE] films using ion-beam (IB) irradiation and a performance improvement of twisted nematic (TN) cells using IB-irradiated PVDF-TrFE films. Spontaneous ferroelectricity of the PVDF-TrFE films was modified by IB irradiation, which affected the LC alignment properties. The variation in the pre-tilt angles of the LC molecules on the IB-irradiated PVDF films is attributed to surface reformation, including defluorination and oxidation because the pre-tilt angles of LC molecules can be controlled by adjusting the fluorine content. The results of contact angle measurements supported this phenomenon. A 58% reduction in the switching voltage was observed for TN cells, indicating that the IB-irradiated PVDF-TrFE films are a promising candidate for use as an alignment layer.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号