首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1376篇
  免费   71篇
  国内免费   115篇
化学   628篇
晶体学   5篇
力学   317篇
综合类   7篇
数学   80篇
物理学   525篇
  2023年   25篇
  2022年   16篇
  2021年   21篇
  2020年   42篇
  2019年   29篇
  2018年   29篇
  2017年   57篇
  2016年   46篇
  2015年   64篇
  2014年   71篇
  2013年   90篇
  2012年   41篇
  2011年   80篇
  2010年   49篇
  2009年   71篇
  2008年   70篇
  2007年   109篇
  2006年   68篇
  2005年   68篇
  2004年   55篇
  2003年   52篇
  2002年   54篇
  2001年   47篇
  2000年   28篇
  1999年   41篇
  1998年   31篇
  1997年   24篇
  1996年   19篇
  1995年   21篇
  1994年   12篇
  1993年   9篇
  1992年   13篇
  1991年   18篇
  1990年   8篇
  1989年   5篇
  1988年   8篇
  1987年   5篇
  1986年   9篇
  1985年   7篇
  1984年   6篇
  1982年   10篇
  1981年   4篇
  1980年   12篇
  1979年   1篇
  1978年   3篇
  1977年   3篇
  1976年   6篇
  1975年   1篇
  1973年   1篇
  1972年   2篇
排序方式: 共有1562条查询结果,搜索用时 15 毫秒
151.
Infrared (IR) photodissociation spectra of the aniline+-Arn cations, An + - Ar n (n = 1, 2), are analyzed in the vicinity of the N-H stretch fundamentals. The complexes are produced in an electron impact (EI) ion source which produces predominantly the most stable cluster isomers. Two isomers of An+-Ar are identified by their characteristic N-H stretch frequencies: the planar proton-bound global minimum, in which the Ar ligand forms a nearly linear H-bond to the amino group, and the less stable π-bound local minimum, in which the Ar atom is attached to the π-electron system of the aromatic ring. This result is the first unambiguous detection of the most stable H-bound An+-Ar dimer. All previous spectroscopic studies of An+-Ar employed resonance enhanced multiphoton ionization (REMPI) of neutral An-Ar and identified only the less stable π-bound cation due to restrictions arising from the Franck-Condon principle. The EI-IR spectrum of An+-Ar2 shows that the most stable structure of this trimer features two equivalent H-bonds (C2v symmetry). The interpretation of the experimental data is supported by quantum chemical calculations. The ab initio potential of An+-Ar calculated at the UMP2/6-311G(2df, 2pd) level features H-bound global minima ( D e = 513 cm-1) and π-bound local minima ( D e = 454 cm-1), with a barrier of V b ≈ 140 cm-1 for isomerization from the π-bound toward the H-bound minimum. Received 4 February 2002 Published online 13 September 2002  相似文献   
152.
A theoretical analysis is presented of viscous incompressible laminar flow in a pipe which rotates around an axis held at small angle with respect to its symmetry-axis. Analogous to the results of Barua and Benton [1, 2], solutions in closed-form are given for circulatory flows in the cross-sectional plane of the pipe due to Coriolis forces in combination with Hagen-Poiseuille flow through the pipe. The solutions are used to derive analytical expressions for trajectories of solid or liquid particles entrained in the gas and being subject to centrifugation and the said secondary flows. It is shown that despite centrifugation, particles can be locked into circulatory trajectories thus remaining suspended in the gas flowing through the pipe.  相似文献   
153.
We see two major trends in Particle Technology. First, the focus is shifted from unit operations towards functional products, i.e. towards product engineering. Second, modeling will become more and more important. Processes cannot yet be designed from basic molecular understanding. Nanotechnology, however, begins to bridge this gap between molecules and particles and may thus open new ways not only for the production and handling of particulate matter but also for the engineered design of advanced material properties. Starting from the concept of product engineering we investigate the basic preconditions for tailoring nanoparticulate properties, i.e. the control of the particle interactions. Nanotechnology can only be transferred to industrial production if the interactions are effectively controlled. Material and particle properties are essential for predictive models. Although strong tools like MD, DEM or population balance models are available, these models are only predictive if realistic material and particle properties are available which is often not the case. We show for selected examples how particle properties can be obtained by studying the physically relevant elementary processes. The impact breakage behavior of many different materials is described by a master curve. Particle adhesion can be modeled if the roughness of particle and substrate and the Hamaker constant are known. The latter is obtained from adsorption studies.  相似文献   
154.
The stress-strain state of a nonshallow truncated conical shell made of a composite material and subjected to axial forces at the ends is studied. A variational difference method is used. Calculations are carried out for an orthotropic shell with low shear stiffness __________ Translated from Prikladnaya Mekhanika, Vol. 43, No. 7, pp. 66–72, July 2007.  相似文献   
155.
The dynamic pull-in instability of double clamped microscale beams actuated by a suddenly applied distributed electrostatic force and subjected to non-linear squeeze film damping is investigated. A reduced order model is built using the Galerkin decomposition with undamped linear modes as base functions and verified through comparison with numerical finite differences solution. The stability analysis of a beam actuated by one and two electrodes symmetrically located at two sides of the beam and operated by a step-input voltage is performed by evaluating the largest Lyapunov exponent, the sign of which defines the character of the response. It is shown that this approach provides an efficient quantitative criterion for the evaluation of dynamic pull-in instability, especially when combined with compact reduced order models. Based on the Lyapunov exponent criterion, the influence of various parameters on the beam dynamic stability is investigated.  相似文献   
156.
THEGENERALMETHODFORSOLVINGDYNAMICPROBLEMS¥(孙右烈)SunYoulie(ShanghaiUniversity,Shanghai200072,P.R.China)Abstract:Inthispapertheau...  相似文献   
157.
Liu  Liping  Dowell  Earl H. 《Nonlinear dynamics》2004,37(1):31-49
The nonlinear dynamical response of a two-degree-of-freedom aeroelastic airfoil motion with cubic restoring forces is investigated. A secondary bifurcation after the primary Hopf (flutter) bifurcation is detected for a cubic hard spring in the pitch degree-of-freedom. Furthermore, there is a hysteresis in the secondary bifurcation: starting from different initial conditions the motion may jump from one limit cycle to another at different fluid flow velocities. A high-order harmonic balance method is employed to investigate the possible bifurcation branches. Furthermore, a numerical time simulation procedure is used to confirm the stable and unstable bifurcation branches.  相似文献   
158.
Computation of a turbulent dilute gas–solid channel flow has been undertaken to study the influence of using wall-corrected drag coefficients and of the lift force on the dispersed phase characteristics. The incompressible Navier–Stokes equations governing the carrier flow were solved by using a direct numerical simulation approach and coupled with a Lagrangian particle tracking. Calculations were performed at Reynolds number based on the wall-shear velocity and channel half-width, Reτ ≈ 184, and for three different sets of solid particles. For each particle set, two cases were examined, in the first one the particle motion was governed by both drag and lift wall-corrected forces, whereas in the other one, the standard drag force (not corrected) was solely acting. The lift force model used represents the most accurate available expression since it accounts for weak and strong shear as well as for wall effects. For this study, we considered elastic collisions for particles contacting the walls and that no external forces were acting. Present results indicate that the use of the lift force and of the drag corrections does not lead to significant changes in the statistical properties of the solid phase, at the exception of some statistics for the high inertia particles.  相似文献   
159.
There are different excitation mechanisms that cause fatal damages due to undesirable vibrations in heat exchanger tube bundles subjected to cross-flow. One of them is the fluid-damping-controlled instability (galloping) that is characterised by a sudden appearance of large amplitudes of the tubes exclusively in cross-flow direction. This paper reports on investigations using an experimental set-up in a wind tunnel where the galloping mechanism in a tube bundle can be observed as an isolated phenomenon. The apparatus allows to realise several tube bundle configurations and geometry's of real heat exchangers. The position of a flexible test tube with a linear iso-viscoelastic mounting inside the tube array is variable. The test tube is equipped with dynamical pressure sensors which are placed directly under pressure holes inside the tube. For the investigation of the acting fluid forces the non-stationary pressure distribution is measured simultaneously at 30 points on the circumference in mid plane and at 15 points in line along the tube together with the tube motion. The acting fluid forces are determined by integration of the whole pressure field process. The study gives insights into the effect of the fluid-damping-controlled instability that is still not fully understood. Moreover, a flow visualization gives an impression of the mechanism at relevant Reynolds-numbers. The results show that in case of instability due to galloping the correlation length of the forces acting along the tube axis increases suddenly to large values. The fluid forces are correlated well for the whole tube when galloping is dominant. The exciting fluid forces show harmonic character and lead to a classical resonance behaviour. Instead of a simple free vibration test in vacuum or still air, which is done mostly for fluid excited structures, the damping coefficient of the oscillating system is determined under operating conditions on the basis of the measured fluid forces. A comparison of the results with those of a free vibration test in still air is shown. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
160.
A hydrophilic interaction liquid chromatography (HILIC) method was developed to measure the composition of humic substances from river, reservoir, and treated wastewater based on their physicochemical properties. The current method fractionates the humic substances into four well-defined groups based on parallel analyses with a neutral and a cationic HILIC column, using mobile phases of varied compositions and pH. The results indicate that: (i) the proportion of carboxylic acids in the humic substances from terrestrial origins is less than half of that from treated wastewater (Jeddah, KSA), (ii) a higher content of basic compounds was observed in the humic substances from treated wastewater and Ribou Reservoir (Cholet, France) than in the sample from Loire River (France), (iii) a higher percentage of hydrophobic macromolecules were found in the humic substances from Loire River than in the other samples, and (iv) humic substances of treated wastewater contained less ionic neutral compounds (i.e., pKa 5–9) than the waters from terrestrial origins. The physicochemical property disparity amongst the compounds in each humic substances sample was also evaluated. The humic substances from the lightly humic Loire river displayed the highest disparity, whereas the highly humic Suwannee river (Georgia, USA) showed the most homogeneous humic substances.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号