首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4562篇
  免费   520篇
  国内免费   484篇
化学   3173篇
晶体学   139篇
力学   185篇
综合类   22篇
数学   97篇
物理学   1950篇
  2024年   17篇
  2023年   45篇
  2022年   128篇
  2021年   136篇
  2020年   157篇
  2019年   112篇
  2018年   130篇
  2017年   153篇
  2016年   175篇
  2015年   155篇
  2014年   209篇
  2013年   461篇
  2012年   272篇
  2011年   328篇
  2010年   184篇
  2009年   305篇
  2008年   298篇
  2007年   291篇
  2006年   243篇
  2005年   204篇
  2004年   217篇
  2003年   170篇
  2002年   207篇
  2001年   105篇
  2000年   117篇
  1999年   82篇
  1998年   89篇
  1997年   71篇
  1996年   87篇
  1995年   62篇
  1994年   67篇
  1993年   52篇
  1992年   39篇
  1991年   27篇
  1990年   19篇
  1989年   21篇
  1988年   25篇
  1987年   12篇
  1986年   14篇
  1985年   12篇
  1984年   11篇
  1983年   5篇
  1982年   10篇
  1981年   6篇
  1980年   6篇
  1979年   7篇
  1978年   7篇
  1976年   5篇
  1974年   4篇
  1973年   2篇
排序方式: 共有5566条查询结果,搜索用时 0 毫秒
41.
The effect of electric field assisted annealing on the microstructure, composition and ionic conductivity properties in CeO2/YSZ oxide heterostructures have been investigated using molecular dynamics simulations. Amorphization–recrystallization steps were performed with and without external electric field of strength 10?MV/cm along three different orientations: in-plane (YZ), normal (X) and 45° resultant (XY) with respect to the oxide heterointerfaces. The microstructural and compositional differences at the interfaces and in the interior of the oxide heterolayers were evaluated and were found to show a clear correlation with the orientations of the applied field. In particular, the XY configuration displayed a compressive lattice strain of ~9% along with a reduced oxygen vacancy concentration when compared to the others. Ionic density profiles suggest pronounced segregation (~60% higher compared to the average value in the interior) of yttrium ions closer to the YSZ/CeO2 interface for the XY configuration. Other configurations exhibit minimal to no such variations. These microstructural differences are found to affect the number of mobile charge carriers and the activation barriers associated with ionic migration through the oxide lattice and consequently, influence the ionic conductivity.  相似文献   
42.
The garnet-type Li7La3Zr2O12 ceramic is a promising solid electrolyte for all-solid-state secondary lithium batteries. However, it faces the problem of lithium volatilization during sintering, which may cause low density and deterioration of ionic conductivity. In this work, the effects of sintering temperature and addition on the density as well as the lithium ion conductivity of Li7-xLa3Zr2-xTaxO12 (LLZTO, x=0.25) ceramics prepared by solid state reaction have been studied. It is found that optimization of the sintering temperature leads to a minor increase in the ceramic density, yielding an optimum ionic conductivity of 2.9×10-4 S·cm-1 at 25℃. Introduction of Li 3 PO 4 addition in an appropriate concentration can obviously increase the density, leading to an optimum ionic conductivity of 7.2×10-4 S·cm-1 at 25℃. This value is superior to the conductivity data in most recent reports on the LLZTO ceramics.  相似文献   
43.
A series of polystyrenes with phosphonic acid ( 5 ) via long alkyl side chains (4, 6, and 8 methylene units) were prepared by the radical polymerization of the corresponding diethyl ω‐(4‐vinylphenoxy)alkylphosphonates, followed by the hydrolysis with trimethylsilyl bromide. The resulting phosphonated polystyrene membranes had a high oxidative stability against Fenton's reagent at room temperature. The membranes prepared from 5 exhibited a very low water uptake, similar to that of Nafion 117 over the wide range of 30 to 80% relative humidity (RH). The proton conductivities of these membranes are lower than that of Nafion 117 in the range of 30 to 90% RH, but comparable or higher than those of the reported phosphonated polymers with higher IEC values, such as the phosphonated poly(N‐phenylacrylamide) (PDPAA, IEC: 6.72 mequiv/g) and fluorinated polymers with pendant phosphonic acids (M47, IEC: 8.5 mequiv/g), at low RH conditions despite the much lower IEC values (3.0–3.8 mequiv/g) of these membranes. These results suggest that the flexible pendant side chains of 5 would contribute to the formation of hydrogen‐bonding networks by considering the very low water uptake of these polymers. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   
44.
45.
The preparation and characterization of a new type of nanocomposite polyelectrolyte membrane, based on DuPont Nafion/imidazole-modified nanosilica (Im-Si), for direct methanol fuel cell applications is described. Related to the interactions between the protonated imidazole groups, grafted on the surface of nanosilica, and negatively charged sulfonic acid groups of Nafion, new electrostatic interactions can be formed in the interface of Nafion and Im-Si which result in both lower methanol permeability and also higher proton conductivity. Physical characteristics of these manufactured nanocomposite membranes were investigated by scanning electron microscopy, thermogravimetry analysis, differential scanning calorimetry, Fourier transform infrared spectroscopy, water uptake, methanol permeability, and ion-exchange capacity, as well as proton conductivity. The Nafion/Im-Si membranes showed higher proton conductivity, lower methanol permeability and, as a consequence, higher selectivity parameter in comparison to the neat Nafion or Nafion/silica membranes. The obtained results indicated that the Nafion/Im-Si membranes could be utilized as promising polyelectrolyte membranes for direct methanol fuel cell applications.  相似文献   
46.
47.
Conductance histograms of palladium nanocontacts in ultra high vacuum (UHV) were experimentally studied at room temperature using scanning tunneling microscope (STM). Our results show that the resolution of the pure Pd peaks, at 1.8 and around 3G0, in the histograms, depends on the bias voltage and the electrodes size. The size of the electrodes should be as small as possible to achieve the higher extraction of hydrogen from them and therefore preventing the diffusion of H from the bulk to the nanocontacts during the conductance measurements, particularly at low bias voltage. This could explain why peaks have not been observed previously in the Pd histograms, using STM techniques in UHV.  相似文献   
48.
Abstract

Twenty-three new α -aryl-β -nitroalkylphosphinates 3a - g were synthesized in high yields under very mild conditions. Compounds 3 consist of two pairs of diastereomeric isomers (A) and (B)  相似文献   
49.
A novel cellulose acetate-g-poly (2-acrylamido-2-methylpropane sulfonic acid-co- methyl methacrylate) copolymer was prepared via free radical polymerization for the first time. The chemical structure of the graft copolymer was confirmed using FT-IR, 1H NMR and EDX. The TGA and DSC investigated the thermal changes. Factors affecting the grafting process were studied and various grafting characteristic parameters such as grafting efficiency (%), grafting yield (%) and add-on value (%) were determined. Flexible membranes based on different graft copolymer compositions were fabricated by simple solution casting. Physicochemical properties including ion exchange capability (IEC), water uptake (WU) and proton conductivity (σ) were evaluated. These membranes demonstrated higher IEC, WU and conductivity than the pristine CA. The maximum proton conductivity of the CA-g-poly (2-acrylamido-2-methylpropane sulfonic acid-co- methyl methacrylate) copolymer membrane (68%; Add-on %) was found to be 6.44 × 10−3 S/cm compared with 0.035 × 10−3 S/cm of the pristine CA. Thus, the appropriate graft copolymer composition will allow fine-tuning of the physical characteristics and led to several potential applications, such as polyelectrolyte fuel cells membranes or biodiesel production.  相似文献   
50.
Near-infrared photoluminescence (PL) and thermally stimulated current (TSC) spectra of Cu3Ga5Se9 layered crystals grown by Bridgman method have been studied in the photon energy region of 1.35–1.46 eV and the temperature range of 15–115 K (PL) and 10–170 K (TSC). An infrared PL band centered at 1.42 eV was revealed at T = 15 K. Radiative transitions from shallow donor level placed at 20 meV to moderately deep acceptor level at 310 meV were suggested to be the reason of the observed PL band. TSC curve of Cu3Ga5Se9 crystal exhibited one broad peak at nearly 88 K. The thermal activation energy of traps was found to be 22 meV. An energy level diagram demonstrating the transitions in the crystal band gap was plotted taking account of results of PL and TSC experiments conducted below room temperature.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号