首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17020篇
  免费   2733篇
  国内免费   1972篇
化学   7262篇
晶体学   245篇
力学   3472篇
综合类   246篇
数学   1474篇
物理学   9026篇
  2024年   49篇
  2023年   288篇
  2022年   568篇
  2021年   599篇
  2020年   597篇
  2019年   480篇
  2018年   453篇
  2017年   646篇
  2016年   784篇
  2015年   726篇
  2014年   968篇
  2013年   1359篇
  2012年   1127篇
  2011年   1198篇
  2010年   1031篇
  2009年   1130篇
  2008年   1154篇
  2007年   1221篇
  2006年   1068篇
  2005年   955篇
  2004年   805篇
  2003年   726篇
  2002年   599篇
  2001年   524篇
  2000年   436篇
  1999年   356篇
  1998年   386篇
  1997年   265篇
  1996年   200篇
  1995年   173篇
  1994年   150篇
  1993年   130篇
  1992年   97篇
  1991年   88篇
  1990年   70篇
  1989年   54篇
  1988年   56篇
  1987年   44篇
  1986年   33篇
  1985年   42篇
  1984年   24篇
  1983年   9篇
  1982年   20篇
  1981年   3篇
  1980年   5篇
  1979年   9篇
  1978年   4篇
  1976年   4篇
  1959年   1篇
  1957年   6篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
71.
流体经过弯管易产生二次流、涡流等扰流情况,使流道内流速分布不均匀,会对流量计的测量精度产生影响.为研究扰流对流量计的影响,利用建模与模拟仿真方式,对G16型号单流道流量计在入口管道为双弯管及半月双弯管情况下的计量效果展开研究,计算两种情况下相对于入口管道为直管时的流量误差度,以此表明单流道流量计在安装弯管时,扰流给测量...  相似文献   
72.
为研究半圆形粗糙元壁面对颗粒沉积的影响,分别采用雷诺应力模型(RSM)和离散相模型(DPM)求解流场与颗粒运动轨迹,并结合临界速度判别颗粒沉积的方法。通过构建不同半圆形粗糙元参数(e/D,p/e)的通风管道计算域,研究了1~10 μm颗粒沉积速度变化及沿气流方向颗粒的沉积趋势,分析了流场所引起的湍流变化对颗粒沉积的影响,与相同参数下的方形粗糙元壁面颗粒沉积特性进行了对比。同时,分析了粗糙元参数对颗粒沉积速度的影响。结果发现,半圆形壁面颗粒沉积速度小于同参数下的方形壁面颗粒沉积速度,这是由于半圆形壁面的回流区相对方形粗糙元更小,捕捉颗粒能力差,半圆形粗糙元流体附壁效应导致半圆形粗糙元拦截效率较低。当e/D=0.02,p/e=3时,颗粒沉积速度变化较大,但在其余参数下变化并不大。半圆形粗糙元壁面的迎风面是颗粒沉积的主要区域。  相似文献   
73.
近年来,机器学习等人工智能技术被应用于蛋白质工程,其在蛋白质结构、功能预测、催化活性等研究中具有独特优势。在未知蛋白质结构的情况下,将蛋白质序列和功能特性与机器学习相结合,基于序列-活性关系(innovative sequence-activity relationship,ISAR)算法,将蛋白质氨基酸序列数字化,用快速傅里叶变换(fast four transform,FFT)进行预处理,再进行偏最小二乘回归建模,可在数据集较少情况下拟合得到最佳模型。通过机器学习对紫色球杆菌视紫红质(gloeobacter violaceus rhodopsin,GR)的突变体蛋白质氨基酸序列与光谱最大吸收波长进行建模,获得了最佳模型。用最佳索引LEVM760106建模得到的确定系数R2 为0.944,均方误差E为11.64。用小波变换进行的预处理,其R2 虽也约为0.944,但E大于11.64,不及FFT进行的预处理。方法较好地解决了蛋白质序列与功能特性之间的数学建模问题,在蛋白质工程中可为预测更优的突变体提供支持。  相似文献   
74.
离散型连接件构成的固体氧化物燃料电池结构中存在反应气体容易产生涡流和较小压降等问题, 影响电池的输出功率. 本文基于COMSOL Multiphysics仿真平台, 建立离散型连接件的固体氧化物燃料电池的三维模型进行数值仿真模拟. 考虑其气体流量、组成、质量以及电化学反应过程, 研究离散型连接件电池阳极和阴极内反应气体的流速、流道阻力和浓度对电池工作性能的影响, 并与相同工况下的平直流道型连接件的固体氧化物燃料电池三维模型进行比较. 结果表明: 离散型连接件的固体氧化物燃料电池流道内的气体流速较大, 气体浓度下降较慢, 有较强的流道传质能力, 与平直流道型连接件的固体氧化物燃料电池相比, 离散型连接件电池的最大输出功率提升了61.27%.  相似文献   
75.
本文采用数值模拟的方法初步研究了颗粒聚集对纳米流体强化换热性能的影响。在流体中随机生成纳米颗粒团聚状态,并对其热性能进行数值模拟,结果表明,纳米颗粒的聚集将会导致流体换热性能的下降,降低程度与纳米颗粒体积分数以及聚集程度有关。  相似文献   
76.
圆管层流脉冲流动对流换热数值分析   总被引:3,自引:0,他引:3  
对等热流和等壁温边界条件下圆管内层流脉冲流动对流换热问题进行了数值模拟。在等热流边界条件下的数值计算结果与理论解吻合很好。计算结果表明:在等热流和等壁温边界下脉冲流动可引起速度、温度以及努塞尔数随时间波动,振幅越大,脉冲频率越小,波动越大。但它们的时均值均等于在相同雷诺数下稳态流动的值,脉冲流动不能强化换热。  相似文献   
77.
太阳池非对流层最佳厚度及最大效率数值模拟   总被引:3,自引:0,他引:3  
本文对现有的太阳池辐射透射模型及稳态热效率模型进行了改进,改进的模型既考虑了池水浊度的影响又考虑了池内多重反射的影响,更接近实际情况。在改进的稳态热效率模型基础上,通过数值模拟的方法,对太阳池非对流层最佳厚度及其最大效率的相关影响因素作了较为详细的分析和讨论。认为太阳池非对流层最佳厚度及其最大效率取决于太阳池尺寸和结构、太阳辐射强度、储热层和上对流层的温差、太阳辐射在水中的透射率、池底反射率、水浊度、池水的物理特性以及池深度等综合因素,其中,△T/I0(储热层和上对流层的温差与水面太阳辐射强度的比值)是影响太阳池非对流层最佳厚度的主要因素,这为太阳池高效运行提供了理论指导。  相似文献   
78.
定常吸气改善叶型气动性能的数值研究   总被引:5,自引:0,他引:5  
提高叶型升力,扩大其稳定工作范围一直是叶轮机械领域关心的问题。本文针对采用定常吸气方法减缓低马赫数流动分离,改善叶型气动特性的问题,在NACA0015叶型上进行了多种工况的数值模拟。结果表明:在叶型头部吸力面分离点附近施加定常吸气,可以提高叶型升力,降低阻力,推迟失速2°左右。存在着最佳的定常吸气动量范围和吸气位置,使得其改善叶型性能的效果最大。文中还给出了定常吸气动量和施加位置等参数对叶型气动性能的一些影响规律。  相似文献   
79.
应用分离涡模型计算斜圆柱孔气膜冷却   总被引:5,自引:0,他引:5  
分离涡模型(DES,Detached eddy simulation)兼有雷诺时均湍流模型计算量较小和大涡模拟计算精度高的优点。本文利用DES对平板单斜圆柱孔的气膜冷却进行了数值模拟,并将结果同RANS湍流模型的计算结果以及实验数据相比较,表明DES能有效弥补RANS湍流模型在计算三维不均匀非定常湍流场的不足,更接近实际地反映了气膜冷却中的流动和换热的本质规律。  相似文献   
80.
New relationship of displacement signal using opposite sectors on a quadrant photodiode is derived. Standard and new displacement signals are analyzed in details. Through MATLAB® laser tracking simulation models, based on common and suggested approaches, detailed analysis is performed, and it is shown that better results for the new relationship signal processing are obtained. Within new relationship of displacement signal, the sensitivity of the system to the displacement of the spot increases and, hence, provides better accuracy in positioning up to 30%.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号