首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4289篇
  免费   161篇
  国内免费   664篇
化学   4165篇
晶体学   22篇
力学   25篇
综合类   1篇
数学   14篇
物理学   887篇
  2024年   6篇
  2023年   225篇
  2022年   152篇
  2021年   162篇
  2020年   194篇
  2019年   129篇
  2018年   87篇
  2017年   150篇
  2016年   193篇
  2015年   185篇
  2014年   236篇
  2013年   197篇
  2012年   321篇
  2011年   285篇
  2010年   240篇
  2009年   319篇
  2008年   301篇
  2007年   288篇
  2006年   253篇
  2005年   222篇
  2004年   207篇
  2003年   137篇
  2002年   90篇
  2001年   112篇
  2000年   50篇
  1999年   53篇
  1998年   56篇
  1997年   42篇
  1996年   26篇
  1995年   35篇
  1994年   15篇
  1993年   24篇
  1992年   17篇
  1991年   17篇
  1990年   14篇
  1989年   10篇
  1988年   17篇
  1987年   13篇
  1986年   4篇
  1985年   9篇
  1984年   10篇
  1983年   1篇
  1982年   9篇
  1979年   1篇
排序方式: 共有5114条查询结果,搜索用时 802 毫秒
71.
《中国化学快报》2021,32(10):3221-3225
Electrochemical heterogeneous catalytic ozonation (E-catazone) is a promising and advanced oxidation technology that uses a titanium dioxide nanoflower (TiO2-NF)-coated porous Ti gas diffuser as an anode material. Our previous study has highlighted that the importance of the TiO2-NF coating layer in enhancing OH production and rapidly degrading O3-resistant drugs. It is well known that the properties of TiO2-NF are closely related to its sintering temperature. However, to date, related research has not been conducted in E-catazone systems. Thus, this study evaluated the effect of the sintering temperature on the degradation of the O3-resistant drug para-chlorobenzoic acid (p-CBA) using both experimental and kinetic modeling and revealed its influence mechanism. The results indicated that the TiO2-NF sintering temperature could influence p-CBA degradation and OH production. TiO2-NF prepared at 450 °C showcased the highest p-CBA removal efficiency (98.5% in 5 min) at a rate of 0.82 min−1, and an OH exposure of 8.41 × 10−10 mol L−1 s. Kinetic modeling results and interface characterization data revealed that the sintering temperature could alter the TiO2 crystallized phase and the content of surface-adsorbed oxygen, thus affecting the two key limiting reactions in the E-catazone process. That is, ≡TiO2 surface reacted with H2O to form TiO2-(OH)2, which then heterogeneously catalyzed O3 to form OH. Consequently, E-catazone with a TiO2-NF anode prepared at 450 °C generated the highest surface reaction rate (5.00 × 10−1 s−1 and 4.00 × 10-3 L mol-1 s−1, respectively), owing to its higher anatase content and adsorbed oxygen. Thus, a rapid O3-TiO2 reaction was achieved, resulting in an enhanced OH formation and a highly effective p-CBA degradation. Overall, this study provides novel baseline data to improve the application of E-catazone technology.  相似文献   
72.
Optical imaging fibers with micrometer-sized wells were used as a sensing platform for the development of microarray optical ion sensors based on selective bulk extraction principles established earlier for optodes. Uniform 10 μm sized microspheres based on plasticized poly(vinyl chloride) containing various combinations of ionophores, fluoroionophores and lipophilic ion-exchangers were prepared for the detection of sodium, potassium, calcium and chloride, and deposited onto the wells of etched fiber bundles. Specifically, sodium sensing particles were based on tert-butylcalix[4]arene tetraacetic acid tetraethylester, potassium particles on 2-dodecyl-2-methyl-1,3-propanediyl bis[N-[5′-nitro(benzo-15-crown-5)-4′-yl]carbamate] (BME-44), calcium particles on an acrylic derivative of ETH 129 (AU-1) covalently attached to a methacrylic polymer, and chloride particles based on the anticrown ionophore [9]mercuracarborand-3 (MC-3). The fluorescence emission characteristics of individual microspheres were observed from the backside of the fibers and were found to selectively and rapidly change as a function of the sample composition. The optical characteristics of the particles were found to be comparable to that of corresponding thin optode films and particles deposited onto microscope glass slides. The measuring ranges (logarithmic molar concentrations) at pH 7.0 were found as −3 to 0 for sodium, −3.5 to −0.5 for potassium, −7 to −2 for calcium, and −5 to 0.5 for chloride. Selectivities were determined over other common electrolytes and found to be sufficient for physiological applications. The simultaneous deposition of sodium and chloride sensing particles was successfully performed, demonstrating that such microarray sensors are capable of simultaneously sensing multiple analytes. This technology is compatible with other microsphere-based fluorescent sensing principles, forming a promising total analysis platform for a variety of applications.  相似文献   
73.
Heteroleptic nickel(II) complexes [NiL2L′] of a series of monoanionic and potentially bidentate N‐2‐pyridyl‐sulfonamide ligands [HL] and 2,2′‐bipyridine or 1,10‐Phenanthroline (L′) have been prepared by electrochemical oxidation of a nickel anode in an acetonitrile solution of the ligands. The complexes have been characterized by microanalysis, IR and electronic spectroscopy, magnetic measurements and LSI mass spectrometry. The crystal structure of [Ni(Ms6mepy)2(bipy)] has been determined by x‐ray diffraction and shows the metal in an octahedral NiN6 environment. Octahedral structures are also proposed for the other complexes with the N‐2‐pyridyl‐sulfonamide ligands acting as N,N′ or N, O bidentate systems, depending on the position of the methyl substituent on the pyridine ring.  相似文献   
74.
The novel applications of molybdenum disulfide in recent research were reviewed, such as in lubricant, catalyst and photoelectrochemical solar cells. Recently, we found that LiMoS2 is a good candidate for new anode materials for lithium ion batteries with high lithium storage capacity.Here, the anode material LiMoS2 was synthesized by a hydrothermal method at 150℃ and the electrochemical characterization as an anode material for lithium ion batteries was examined.put in Teflon-lined stainless steel autoclaves of capacity 40 mL. Distilled water was used to fill the autoclaves to 70 % of the total volume. The autoclaves were maintained at 150℃ for 24 h and then cooled naturally. The resulting dark-gray powders were filled and washed with distilled water,diluted hydrochloric acid and ethanol, successively. The final products were dried at 80℃ for 24 h.The powder X-ray diffraction pattern showed the prepared LiMoS2 was amorphous structure. A test cell using LiMoS2 as the active material was discharged and charged between 3 and 0.01 V with respect to Li metal at a constant current density of C/5 (that is, one lithium per formula unit in 5 hours). During the first discharge, the potential rapidly drops to reach a large plateau at 2.2 V, then slowly drops to the other plateau at 0.8 V, and then continuously decreases down to 0.01V. There is only a plateau at 1.35 V in the subsequent discharge curves. The plateaus of charge potential appear at about 1.9 V.The irreversible loss was 41% in the first cycle. The ratio of discharge and charge is more than 99%in the subsequent cycles. Moreover, the ratio of discharge and charge almost reaches 100% after thedemonstrated that LiMoS2 has a very high capacity and a good cycle-ability as an anode material forlithium ion batteries.  相似文献   
75.
The corrosion and passivation of Zn powder particles dispersed in a paste electrode immersed in 0.5 M Na2SO4 and 5×10–3 M Na2HPO4 solutions were studied mainly by electrochemical impedance spectroscopy. The role played by diffusion in the mechanism of anodic oxidation of zinc powder particles has been shown. It was demonstrated that the anodic reactionof Zn powder in neutral or near neutral media involves at least two adsorbed intermediates. By simulating the porous structure of the electrode, some information about porous nature of zinc electrode could be extracted. Electronic Publication  相似文献   
76.
[Co(H2o)4(NCS)2](18—C—6)的薄层光谱电化学研究   总被引:2,自引:0,他引:2  
利用光谱电化学方法来研究冠醚类化合物的文章尚未见报导.本文在测定用凝胶法合成的[Co(H_2O)(NCS)_2](18-C-6)的核磁共振谱和红外光谱的基础上,使用循环伏安法和薄层光谱电化学技术,在金微栅电极上测定了此配合物在乙腈溶剂中的第一步克式量电势(E~0′)和电子转移数(n),并推测了电还原反应机理.  相似文献   
77.
《Electroanalysis》2004,16(12):1051-1058
The voltammetric behavior of α‐ketoglutarate (α‐KG) at the hanging mercury drop electrode (HMDE) has been investigated in acetate buffer solution. Under the optimum experimental conditions (pH 4.5, 0.2 M NaAc‐HAc buffer solution), a sensitive reductive wave of α‐KG was obtained by linear scan voltammetry (LSV) and the peak potential was ?1.18 V (vs. SCE), which was an irreversible adsorption wave. The kinetic parameters of the electrode process were α=0.3 and ks=0.72 1/s. There was a linear relationship between peak current ip, α‐KG and α‐KG concentration in the range of 2×10?6–8×10?4 M α‐KG. The detection limit was 8×10?7 M and the relative standard deviation was 2.0% (Cα‐KG=8×10?4 M, n=10). Applications of the reductive wave of α‐KG for practical analysis were addressed as follows: (1) It can be used for the quantitative analysis of α‐KG in biological samples and the results agree well with those obtained from the established ultraviolet spectrophotometric method. (2) Utilizing the complexing effect between α‐KG and aluminum, a linear relationship holds between the decrease of peak current of α‐KG Δip and the added Al concentration Cequation/tex2gif-inf-5.gif in the range of 5.0×10?6–2.5×10?4 M. The detection limit was 2.2×10?6 M and the relative standard deviation was 3.1% (Cequation/tex2gif-inf-6.gif=4×10?5 M, n=10). It was successfully applied to the detection of aluminum in water and synthetic biological samples with satisfactory results, which were consistent with those of ICP‐AES. (3) It was also applied to study the effect of AlIII on the glutamate dehydrogenase (GDH) activity in the catalytically reaction of α‐KG+NH +NADH?L ‐glutamate+NAD++H2O by differential pulse polarography (DPP) technique. By monitoring DPP reductive currents of NAD+ and α‐KG, an elementary important result was found that Al could greatly affect the activity of GDH. This study could be attributed to intrinsic understanding of the aluminum's toxicity in enzyme reaction processes.  相似文献   
78.
Vickers JA  Henry CS 《Electrophoresis》2005,26(24):4641-4647
There is a need to develop broadly applicable, highly sensitive detection methods for microchip CE that do not require analyte derivatization. LIF is highly sensitive but typically requires analyte derivatization. Electrochemistry provides an alternative method for direct analyte detection; however, in its most common form, direct current (DC) amperometry, it is limited to a small number of easily oxidizable or reducible analytes. Pulsed amperometric detection (PAD) is an alternative waveform that can increase the number of electrochemically detectable analytes. Increasing sensitivity for electrochemical detection (EC) and PAD requires the isolation of detection current (nA) from the separation current (muA) in a process generally referred to as current decoupling. Here, we present the development of a simple integrated decoupler to improve sensitivity and its coupling with PAD. A Pd microwire is used as the cathode for decoupling and a second Au or Pt wire is used as the working electrode for either EC or PAD. The electrode system is easy to make, requiring no clean-room facilities or specialized metallization systems. Sensitive detection of a wide range of analytes is shown to be possible using this system. Using this system we were able to achieve detection limits as low as 5 nM for dopamine, 74 nM for glutathione, and 100 nM for glucose.  相似文献   
79.
The synthesis, optical, and electrochemical properties of semi-conducting co-oligomers of biphenyl/oligothiophenes and homo-oligophenylenes derived from a precursor 4-bromo-4-(n-butyl)-2,2-biphenyl, which was synthesized by a direct alkylation from 4,4-dibromo-2,2-biphenyl using n-butyl lithium, are reported.  相似文献   
80.
The copper(II/I) complexes of hexathiaether macrocyclic ligand, 1,4,8,11,15,18-hexathiacyclohenicosane ([21]aneS6), were synthesized, and characterized by electrochemical and spectroscopic techniques. Cyclic voltammetric studies indicate that Cu([21]aneS6)2+/+ forms a reversible one-electron redox couple. The electrochemical potential obtained for Cu([21]aneS6)2+/+ (Ef = 0.89 V, against SHE) was found to be the highest potential reported to date for a Cu2+/+ macrocyclic system in aqueous solution. By employing the Nernst equation, we can infer that the practical upper limit for formal potential of Cu(II/I)L systems maybe close to this high value. Stability constant data obtained for these complexes indicate that Cu([21]aneS6)+is 12 orders of magnitude greater in stability than that of Cu([21]aneS6)2+ indicating the favorable nature of this large macrocyclic ligand towards formation of Cu(I) complexes over Cu(II) complexes. Crystal structure of Cu([21]aneS6)+ ( Fig. 2) shows that four sulfurs adjacent to one another are coordinated to Cu+ ion in this complex. Bond angles and distances calculated for the crystal indicate that it is a distorted tetrahedron, a geometry commonly encountered by Cu(I) complexes. This is the first report of synthesis and characterization of a metal coordinated [21]aneS6 complex.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号