首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3612篇
  免费   79篇
  国内免费   229篇
化学   1317篇
晶体学   10篇
力学   608篇
综合类   4篇
数学   1069篇
物理学   912篇
  2024年   7篇
  2023年   91篇
  2022年   38篇
  2021年   47篇
  2020年   93篇
  2019年   61篇
  2018年   51篇
  2017年   106篇
  2016年   114篇
  2015年   90篇
  2014年   201篇
  2013年   265篇
  2012年   177篇
  2011年   222篇
  2010年   172篇
  2009年   287篇
  2008年   287篇
  2007年   263篇
  2006年   196篇
  2005年   169篇
  2004年   149篇
  2003年   120篇
  2002年   111篇
  2001年   80篇
  2000年   82篇
  1999年   64篇
  1998年   50篇
  1997年   46篇
  1996年   34篇
  1995年   33篇
  1994年   36篇
  1993年   21篇
  1992年   27篇
  1991年   17篇
  1990年   7篇
  1989年   14篇
  1988年   19篇
  1987年   7篇
  1986年   11篇
  1985年   11篇
  1984年   11篇
  1983年   5篇
  1982年   8篇
  1981年   4篇
  1980年   5篇
  1979年   7篇
  1978年   2篇
  1977年   1篇
  1976年   1篇
排序方式: 共有3920条查询结果,搜索用时 0 毫秒
71.
The synthesis and the structure of new macrocycles containing semiflexible dispiro-1,3-dioxane units is reported. The structural analysis of the compounds is performed by high field NMR spectra, mass spectrometry investigations (MALDI, ESI-MS) and the solid state molecular structure obtained for two compounds by single crystal X-ray diffractometry. The dynamics of the macrocycles promoted by the flipping of the middle cyclohexane ring of the dispirane units is investigated using low temperature NMR experiments.

New macrocycles containing dispiro-1,3-dioxane units were investigated by NMR, X-ray diffractometry and mass spectrometry  相似文献   
72.
73.
Nano-activated carbons obtained from oil palm empty fiber bunch (AC-EFB), bamboo stem (AC-BS), and coconut shells (AC-CNS) were reinforced in epoxy matrix to fabricate epoxy nanocomposites. The dynamic mechanical analysis of epoxy nanocomposites was carried out, and 5% AC-CNS treated with KOH-filled epoxy composites displayed the highest storage modulus of all the activated carbon–filled epoxy composites. The incorporation of a small amount of AC-BS, AC-EFB, and AC-CNS to the epoxy matrix enhanced the damping characteristics of the epoxy nanocomposites. The 5% AC-EFB treated with H3PO4 filled epoxy composites showed the highest glass transition temperature (Tg) in all temperature ranges.  相似文献   
74.
A mathematical model is constructed and solved that could describe the dynamic behavior of the adsorption of a solute of interest in single and stratified columns packed with partially fractal porous adsorbent particles. The results show that a stratified column bed whose length is the same as that of a single column bed, provides larger breakthrough times and a higher dynamic utilization of the adsorptive capacity of the particles than those obtained from the single column bed, and the superior performance of the stratified bed becomes especially more important when the superficial velocity of the flowing fluid stream in the column is increased to accommodate increases in the system throughput. This occurs because the stratified column bed provides larger average external and intraparticle mass transfer and adsorption rates per unit length of packed column. It is also shown that increases in the total number of recursions of the fractal and the ratio of the radii between larger and smaller microspheres that make up the partially fractal particles, increase the intraparticle mass transfer and adsorption rates and lead to larger breakthrough times and dynamic utilization of the adsorptive capacity of the particles. The results of this work indicate that highly efficient adsorption separations could be realized through the use of a stratified column comprised from a practically reasonable number of sections packed with partially fractal porous adsorbent particles having reasonably large (i) total number of recursions of the fractal and (ii) ratio of the radii between larger and smaller microspheres from which the partially fractal particles are made from. It is important to mention here that the physical concepts and modeling approaches presented in this work could be, after a few modifications of the model, applied in studying the dynamic behavior of chemical catalysis and biocatalysis in reactor beds packed with partially fractal porous catalyst particles.  相似文献   
75.
The asymmetric transfer hydrogenation of β-amido-α-keto esters providing the corresponding anti-β-amido-α-hydroxy esters via dynamic kinetic resolution is reported. The use of a commercially available, or simply prepared, chiral ruthenium catalyst results in good yields as well as high diastereoselectivities and enantioselectivities.  相似文献   
76.
A simple and economical CE method has been developed for the analysis of four model basic proteins by employing N‐methyl‐2‐pyrrolidonium methyl sulfonate ionic liquid (IL) as the dynamic coating material based on the interaction of both between electrostatic attraction and hydrogen bond, and between the organic cations of IL and the inner surface of bare fused‐silica capillary. The N‐methyl‐2‐pyrrolidonium‐based IL modified capillary not only generated a stable suppressed electroosmotic flow, but also effectively eliminated the wall adsorption of proteins. Several important parameters such as the IL concentration, pH values, and concentrations of the background electrolyte were optimized to improve the separation of basic proteins. Consequently, under the optimum separation conditions, a satisfied separation of basic proteins including lysozyme, cytochrome c, ribonuclease A, and α‐chymotrypsinogen A with theoretical plates ranging from 2.09 × 105 to 4.48 × 105 plates/m had been accomplished within 15 min. The proposed method first illustrated the effect of hydrogen bond between coating material and inner capillary surface on the coating, which should be a new strategy to design and select more effective coating materials to form more stable coatings in CE.  相似文献   
77.
Multiple emulsions stabilized by colloidal microcrystalline cellulose (CMCC, Avicel RC591) at the w/o and o/w interfaces, and by the addition of Span 80 or Span 85 at the w/o interface, were studied by means of brightfield microscopy, freeze-etch electron microscopy, droplet size distribution analysis and rheologic measurements. Stable multiple emulsions were prepared by incorporation of sodium chloride in the innermost aqueous phase, thereby creating an osmotic gradient preventing loss of the inner aqueous phase to the external aqueous phase. Freeze-etch electron microscopy of the multiple emulsions indicated the presence of a network of microcrystalline cellulose at the outer o/w interface. It may be assumed that the surfactant directly stabilized the w/o interface by adsorption at the interface, as well as indirectly by facilitating wetting of the microcrystalline cellulose by the oil. From rheologic measurements, the existence of a three-dimensional network in the external aqueous phase was indicated by the considerable degrees of thlxotropy and significant static yield values of these multiple emulsions.  相似文献   
78.
79.
Broadband Dielectric Spectroscopy (BDS) is used to probe the molecular dynamics of Type A polymer, poly(cis-1,4-isoprene), when confined in the 1-dimensional (1D) exploring space of thin layers and the 2-dimensional (2D) constraining geometry of unidirectional anodic aluminum oxide (AAO) nanopores. For both cases, it was observed that the structural relaxation remains bulk-like in its mean relaxation rate, although the distribution of its relaxation times is broadened in 2D confinement. Furthermore, the fluctuation of the end-to-end vector is interrupted, with the 1D case being relatively less pronounced. By this clear-cut comparison, it is demonstrated that the effects of confinement on molecular dynamics depend, inter alia, on the dimensionality of the restricting space.  相似文献   
80.
Active particles can autonomously propel and have the tendency to organize into high-order ensembles and phases that evolve and reconfigure. They have emerged as a focused subject in contemporary colloid science, holding great promise in advancing fields, such as cargo delivery, sensing, micromachinery and microrobotics, and materials science. Realization of the full potentials of active particles requires delicate control of their dynamics in propulsion and assembly, which is challenging due to the out-of-equilibrium nature of such systems. Recently, systematically engineered colloidal shapes have been exploited as an effective means to tune and even program the dynamic behaviors of active particles. Various anisotropic particles, with controlled geometries and possessing either homogeneous or heterogeneous composition, have been fabricated, regulating how particles actively propel, interact, and assemble under several chemical and physical stimuli. In this paper, we provide an overview of these progresses. We also briefly discuss our view on the future directions and challenges.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号