首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1448篇
  免费   71篇
  国内免费   189篇
化学   1427篇
晶体学   2篇
力学   14篇
综合类   2篇
数学   15篇
物理学   248篇
  2024年   5篇
  2023年   76篇
  2022年   78篇
  2021年   85篇
  2020年   81篇
  2019年   54篇
  2018年   42篇
  2017年   61篇
  2016年   71篇
  2015年   56篇
  2014年   79篇
  2013年   73篇
  2012年   68篇
  2011年   97篇
  2010年   49篇
  2009年   79篇
  2008年   99篇
  2007年   88篇
  2006年   70篇
  2005年   44篇
  2004年   48篇
  2003年   27篇
  2002年   18篇
  2001年   22篇
  2000年   11篇
  1999年   26篇
  1998年   25篇
  1997年   31篇
  1996年   15篇
  1995年   30篇
  1994年   24篇
  1993年   10篇
  1992年   17篇
  1991年   14篇
  1990年   6篇
  1989年   8篇
  1988年   2篇
  1987年   2篇
  1986年   3篇
  1985年   2篇
  1984年   2篇
  1983年   2篇
  1982年   2篇
  1981年   3篇
  1979年   1篇
  1977年   1篇
  1976年   1篇
排序方式: 共有1708条查询结果,搜索用时 15 毫秒
71.
A mesoporous TiO2?x material comprised of small, crystalline, vacancy‐rich anatase nanoparticles (NPs) shows unique optical, thermal, and electronic properties. It is synthesized using polymer‐derived mesoporous carbon (PDMC) as a template. The PDMC pores serve as physical barriers during the condensation and pyrolysis of a titania precursor, preventing the titania NPs from growing beyond 10 nm in size. Unlike most titania nanomaterials, during pyrolysis the NPs undergo no transition from the anatase to rutile phase and they become catalytically active reduced TiO2?x. When exposed to a slow electron beam, the NPs exhibit a charge/discharge behavior, lighting up and fading away for an average period of 15 s for an extended period of time. The NPs also show a 50 nm red‐shift in their UV/Vis absorption and long‐lived charge carriers (electrons and holes) at room temperature in the dark, even long after UV irradiation. The NPs as photocatalysts show a good activity for CO2 reduction.  相似文献   
72.
The resistances of matrix protein 2 (M2) protein inhibitors and neuraminidase inhibitors for influenza virus have attracted much attention and there is an urgent need for new drug. The antiviral drugs that selectively act on RNA polymerase are less prone to resistance and possess fewer side effects on the patient. Therefore, there is increased interest in screening compounds that can inhibit influenza virus RNA polymerase. Three natural compounds were found by using molecular docking-based virtual screening, which could bind tightly within the polymerase acidic protein-polymerase basic protein 1 (PA-PB1) subunit of influenza virus polymerase. Firstly, their drug likeness properties were evaluated, which showed that the hepatotoxicity values of all the three compounds indicating they had less or no hepatotoxicity, and did not have the plasma protein biding (PPB) ability, the three compounds needed to be modified in some aspects, like bulky molecular size. The stability of the complexes of PA-hits was validated through molecular dynamics (MD) simulation, revealing compound 2 could form more stable complex with PA subunit. The torsional conformations of each rotatable bond of the ligands in PA subunit were also monitored, to investigate variation in the ligand properties during the simulation, compound 3 had fewer rotatable bonds, indicating that the molecule had stronger rigidity. The bar charts of protein–ligand contacts and contacts over the course of trajectory showed that four key residues (Glu623, Lys643, Asn703 and Trp706) of PA subunit that participated in hydrogen-bond, water bridge and hydrophobic interactions with the hit compounds. Finally, the binding free energy and contributed energies were calculated by using MM-GBSA method. Out of the three compounds, compound 1 showed the lowest total binding free energy. Among all the interactions, the contribution of the covalent binding and the van der Waals energy were more than other items, compound 1 formed more stable hydrogen bonds with the residues of PA subunit binding pocket. This study smoothed the path for the development of novel lead compounds with improved binding properties, high drug likeness, and low toxicity to humans for the treatment of influenza, which provided a good basis for further research on novel and effective influenza virus PA-PB1 interaction inhibitors.  相似文献   
73.
An innovative application of the solvent evaporation technique was suggested. Solvent evaporation technique is a technique for drug encapsulation and nanosphere preparation. The widely used technique is also facing the problem of low actual drug entrapment percent, which is not economic from the industrial view. The goal of this work is trying to use the advantage of this technique concerning the product sphericity and the ability to control particle size, to prepare a drug as pure crystals spheres. Ibuprofen is selected as a model drug. The spheres are formed by using Polyvinyl pyrrolidone (PVP) or Polyethylene glycol (PEG) as an anti-aggregating agent but not formed on using tween or span. Particle size and actual drug content depend on the concentrations the anti-aggregating agent used. Surfaces of the drug crystal spheres are porous with empty sphere internal structure on using PVP but spongy and rough on using PEG. The drug has its identity chemical form in the drug crystal spheres. IR scan of spheres prepared on using PEG showed a characteristic ether peak. DSC showed melting endothermic peak of PEG, but X-ray showed minor change in the drug crystal patterns. Drug release profiles from crystal spheres prepared with the same anti-aggregating agent are close to each other. The drug release profiles from drug crystal spheres prepared by using PEG are more controlled than that prepared by using PVP. The drug release mechanism is diffusion. It was concluded that, the same technique could be suggested for preparation of other biomedical material in pure crystals spheres with controlled particle size. These properties may encourage to prepare very small particles with spherical shape for inhalation or injection as an innovative particle technology application for the widely used technique.  相似文献   
74.
(1) Background: The control of mosquitoes with essential oils is a growing demand. (2) Methods: This study evaluated the novel larvicidal and adulticidal activity of fennel and green tea oils and their nanostructured lipid carriers (NLC) against Culex pipiens (C. pipiens) in the laboratory, field conditions and evaluated their effect against non-target organisms. SLN type II nanoformulations were synthesized and characterized using dynamic light scattering (DLS), zeta potential and transmission electron microscope. (3) Results: The synthesized NLCs showed spherical shaped, homogenous, narrow, and monomodal particle size distribution. The mortality percent (MO%) post-treatment (PT) with 2000 ppm for 24 h with fennel oil and NLC fennel (NLC-F) reached 85% (LC50 = 643.81 ppm) and 100% (LC50 = 251.71), whereas MO% for green tea oil and NLC green tea (NLC-GT) were 80% (LC50 = 746.52 ppm) and 100% (LC50 = 278.63 ppm), respectively. Field trial data showed that the larval reduction percent of fennel oil and NLC-F reached 89.8% and 97.4%, 24 h PT and the reduction percent of green tea oil and NLC-GT reached 89% and 93%, 24 h PT with persistence reached 8 and 7 days, for NLC-F and NLC-GT, respectively. The adulticidal effects showed that NLC-F and NLC-GT (100% mortality) were more effective than fennel and green tea oils (90.0% and 83.33%), with 24 h PT, respectively. Moreover, their reduction of adult density after spraying with LC95 X2 for 15 min, with fennel oil, NLC-F, and green tea oil, NLC-GT were 83.6%, 100%, 79.1%, and 100%, respectively, with persistence (>50%) lasting for three days. The predation rate of the mosquitofish, Gambusia affinis, and the bug, Sphaerodema urinator, was not affected in both oil and its NLC, while the predation rate of the beetle, Cybister tripunctatus increased (66% and 68.3%) by green tea oil and NLC-GT, respectively. (4) Conclusions: NLCs nanoformulation encapsulated essential oils was prepared successfully with unique properties of size, morphology, and stability. In vitro larvicidal and adulticidal effects against C. pipiens supported with field evaluations have been performed using essential oils and their nanoformulations. The biological evaluation of nanoformulations manifested potential results toward both larvicidal and adulticidal compared to the essential oils themselves, especially NLC encapsulated fennel oil which had promising larvicidal and adulticidal activity.  相似文献   
75.
《Physics letters. A》2020,384(24):126600
This work was primarily focused on the synthesis, characterization and biomedical applications of cobalt ferrite (CoFe2O4) nanoparticles, which were synthesized by a facile solvothermal method using an amino acid of Leucine (Leu) as the surface coating agents. The morphology, structure and properties of the as-synthesized uncoated and Leu-coated CoFe2O4 nanoparticles were characterized in detail by means of XRD, SEM, TEM, DLS, FTIR, XPS, TGA and SQUID. More importantly, it was found that the Leu-coated CoFe2O4 nanoparticles can be used as the efficient drug delivery with a drug loading capacity of 0.32 mg/mg for doxorubicin hydrochloride (DOX), and the loaded DOX demonstrated a sustained and progressive release manner. The in vitro cytotoxicity studies towards the HeLa cells were carried out, and the results indicated that the Leu-coated CoFe2O4 nanoparticles exhibited a relatively high cell viability compared with that of bare CoFe2O4 nanoparticles and the DOX loaded Leu-coated CoFe2O4 nanoparticles presented an obvious cytotoxic effect on HeLa cells.  相似文献   
76.
Nanocomposite hydrogels are one of the most important types of biomaterials which can be used in many different applications such as drug delivery and tissue engineering.Incorporation of nanoparticles within a hydrogel matrix can provide unique characteristics like remote stimulate and improved mechanical strength.In this study,the synthesis of graphene oxide and graphene oxide nanocomposite hydrogel has been studied.Nanocomposite hydrogel was synthesized using carboxymethyl cellulose as a natural base,acrylic acid as a comonomer,graphene oxide as a filler,ammonium persulfate as an initiator,and iron nanoparticles as a crosslinking agent.The effect of reaction variables such as the iron nanoparticles,graphene oxide,ammonium persulfate,and acrylic acid were examined to achieve a hydrogel with maximum absorbency.Doxorubicin,an anti-cancer chemotherapy drug,was loaded into this hydrogel and its release behaviors were examined in the phosphate buffer solutions with different pH values.The structure of the graphene oxide and the optimized hydrogel were confirmed by Fourier-transform infrared spectroscopy,Raman spectroscopy,X-ray diffraction,scanning electron microscopy,and atomic force microscopy.  相似文献   
77.
合成了一种甘露醇引发的星型共聚物甘露醇-聚乳酸-聚乙三醇1000维生素E琥珀酸酯(M-PLATPGS).利用纳米沉淀法制备载紫杉醇M-PLA-TPGS纳米颗粒.纳米颗粒近似球形,粒径分布较窄.对载药纳米颗粒进行粒径、表面电荷、载药量、包封率和体外药物释放的表征,结果表明,体外药物释放呈双相释放模型,M-PLA-TPGS纳米颗粒在前列腺癌PC-3细胞中的摄取水平要高于PLGA和PLA-TPGS纳米颗粒.载紫杉醇M-PLA-TPGS纳米颗粒对于前列腺癌细胞的的毒性显著高于载紫杉醇PLA-TPGS纳米颗粒和商业制剂Taxol,证明星型M-PLA-TPGS聚合物作为纳米药物载体优于线性PLGA和PLA-TPGS聚合物.  相似文献   
78.
Stimuli-responsive polymers have undoubtedly been of great interest in the past decades due to a variety of their potential applications in biomedical territory. However, their non-degradability limits their in vivo applications. Herein, we report a novel pH and temperature dual-stimuli responsive-poly(β-amino ester). The pH/temperature sensitivities are interrelated and can be easily tuned by changing PEG-diacrylate chain length and the percentage of biamines in the feed ratio. These dual-responsive polymers are very useful in drug delivery. Reaction of methyl ether poly(ethylene glycol)(MPEG) and poly(β-amino ester) resulted in an amphiphilic MPEG-PBAE block copolymer which could form nanoparticles by selfassembly. A hydrophobic drug(DOX) was loaded in the self-assembled nanoparticles at low temperature without using organic solvents. The loaded drug was released very slowly and steadily at 37 ℃ under physiological conditions(p H 7.4), but rapidly released from the micelles in weakly acidic environments(pH 6.4 and 5.0) for intracellular drug release. Thus, these poly(β-amino ester) polymers constitute ideal drug carriers since their thermal sensitivity allows the drug loadings without using organic solvent and their pH sensitivity permits fast intracellular drug release.  相似文献   
79.
纳米材料具有荷载效率高、靶向性能好、半衰期较长等优点, 非常适于作为药物转运载体, 可有效提高药物的水溶性、稳定性和疾病治疗效果.目前, 开发具有良好生物相容性、可控靶向释放能力和精确载药位点的理想药物转运载体, 仍是该领域存在的挑战性问题和当前研究的重点.自组装DNA纳米结构是一类具有精确结构、功能多样的纳米生物材料, 具有良好的生物相容性和稳定性、较高的膜渗透性和可控靶向释放能力等优点, 是理想的药物转运载体和智能载药材料.本文总结了DNA纳米结构的发展历程、DNA纳米结构作为药物转运载体的研究现状、动态DNA纳米结构在智能载药中的应用进展, 并对其发展前景进行了展望.  相似文献   
80.
制备了一种在疏水段带有侧基叠氮官能团的两亲性pH敏感的聚合物——聚己内酯-聚(甲基丙烯酸二乙氨基乙酯-磺酸甜菜碱)((PCL-ACL)-PDEAS);同时合成了两端带有炔基中间带有二硫键的交联剂,用红外、核磁表征了目标分子.通过两亲性高分子自组装形成胶束,并通过点击化学反应获得了核交联的胶束.通过动态光散射测定粒径,胶束酸碱滴定表征胶束的pH敏感性,还原条件下释放药物的速度,对比了非交联胶束和交联胶束的性质.结果表明,交联胶束在正常生理条件下的释放速度比未交联胶束更慢;而在有DTT的存在条件下,交联胶束由于二硫键断裂,释放速率明显加快.因此,核交联载药胶束有可能响应肿瘤的微环境实现靶向释放.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号