首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   726篇
  免费   31篇
  国内免费   63篇
化学   239篇
晶体学   1篇
力学   383篇
综合类   1篇
数学   114篇
物理学   82篇
  2024年   2篇
  2023年   2篇
  2022年   7篇
  2021年   6篇
  2020年   11篇
  2019年   14篇
  2018年   19篇
  2017年   16篇
  2016年   20篇
  2015年   17篇
  2014年   15篇
  2013年   45篇
  2012年   17篇
  2011年   20篇
  2010年   12篇
  2009年   33篇
  2008年   39篇
  2007年   47篇
  2006年   41篇
  2005年   36篇
  2004年   43篇
  2003年   30篇
  2002年   30篇
  2001年   30篇
  2000年   31篇
  1999年   21篇
  1998年   33篇
  1997年   30篇
  1996年   21篇
  1995年   20篇
  1994年   17篇
  1993年   19篇
  1992年   15篇
  1991年   9篇
  1990年   7篇
  1989年   5篇
  1987年   2篇
  1986年   7篇
  1985年   7篇
  1984年   6篇
  1983年   1篇
  1982年   12篇
  1981年   4篇
  1977年   1篇
排序方式: 共有820条查询结果,搜索用时 203 毫秒
721.
The study of flow of non‐Newtonian fluids in porous media is very important and serves a wide variety of practical applications in processes such as enhanced oil recovery from underground reservoirs, filtration of polymer solutions and soil remediation through the removal of liquid pollutants. These fluids occur in diverse natural and synthetic forms and can be regarded as the rule rather than the exception. They show very complex strain and time dependent behavior and may have initial yield‐stress. Their common feature is that they do not obey the simple Newtonian relation of proportionality between stress and rate of deformation. Non‐Newtonian fluids are generally classified into three main categories: time‐independent whose strain rate solely depends on the instantaneous stress, time‐dependent whose strain rate is a function of both magnitude and duration of the applied stress and viscoelastic which shows partial elastic recovery on removal of the deforming stress and usually demonstrates both time and strain dependency. In this article, the key aspects of these fluids are reviewed with particular emphasis on single‐phase flow through porous media. The four main approaches for describing the flow in porous media are examined and assessed. These are: continuum models, bundle of tubes models, numerical methods and pore‐scale network modeling. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2010  相似文献   
722.
根据修正的Timoshenko理论,在几何非线性中考虑了剪切变形和转动惯量,对黏弹性圆柱壳的动力稳定性进行了研究.根据Bubnov-Galerkin法,结合基于求积公式的数值方法,将问题简化为求解具有松弛奇异核的非线性积分-微分方程的问题.针对物理-力学和几何参数在大范围内的变化,研究壳体的动力特性,显示了材料的黏弹性对圆柱壳动力稳定性的影响.最后,比较了通过不同的理论得到的结果.  相似文献   
723.
A linear system is considered of the differential equations describing a joint motion of an elastic porous body and a fluid occupying a porous space. The problem is linear but very hard to tackle since its main differential equations involve some (big and small) nonsmooth oscillatory coefficients. Rigorous justification under various conditions on the physical parameters is fulfilled for the homogenization procedures as the dimensionless size of pores vanishes, while the porous body is geometrically periodic. In result, we derive Biot’s equations of poroelasticity, the system consisting of the anisotropic Lamé equations for the solid component and the acoustic equations for the fluid component, the equations of viscoelasticity, or the decoupled system consisting of Darcy’s system of filtration or the acoustic equations for the fluid component (first approximation) and the anisotropic Lamé equations for the solid component (second approximation) depending on the ratios between the physical parameters. The proofs are based on Nguetseng’s two-scale convergence method of homogenization in periodic structures.  相似文献   
724.
DMA is a tool for studying linear viscoelastic behavior of polymers over ranges of temperature and frequency. Viscoelasticity has its origin in the complex molecular behavior of the polymer. A theoretical master curve has been constructed, based predominantly on thermodynamic theories of polymer molecular conformations, and their intermolecular cooperativity.This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   
725.
The molecular theory of non‐linear viscoelasticity for vitrifiable thermoplastic polyurethane elastomers (VTPUE) is a refinement and extension of viscoelastic theory of thermoplastic elastomers and polyurethanes to glassy transition, a structural model and a mechanism of vitrification for glassy polymers were proposed. Five kinds of constituent chains with Nagai chain constraint consisting of soft‐domains, hard‐domains, and entanglements are used as the elementary structural and statistical ensemble units for the correlation of molecular and phase‐domain structures to the static and dynamic mechanical behaviors. So the influences of non‐Gaussian in character, the phase separation of domain, the network topology of structure, the affined deformation of constituent chains, and the thermal history are all taken into account in the constituent chains of the theory. Free energies of deformation for the VTPUE segment copolymer were calculated by the statistical mechanics with the probability distribution functions of the sizes for the five kinds of constituent chains. Then the static constitutive equations and modulus of four types of deformation and the dynamic shear viscosity, modulus and loss tangent of VTPUE are derived from the proposed theory. The theory is successful in relating the molecular chain parameters C100, C020, and C200 to the constitutive equations and modulus under large deformations and the micro‐domain structure to the complex shear viscosity and modulus and the loss tangent. The dynamic shear modulus and loss tangent of VTPUE are related to the domain structures through the fraction of hard segments (Wh), the molecular weight of soft segment (Mns), and the growth dimensional parameters of hard and soft domains (β). Two series of linear VTPUE copolymers (ES and ET) with different fractions(Wh) of hard segments and molecular weight (Mns) of soft segments were prepared. Their static and dynamic mechanical properties were studied by uni‐axial extension and dynamic analysis tests. Then the constitutive equation at uni‐axial extension and the expressions of shear modulus and loss tangent are verified by these experimental data, and excellent agreement between the theory and experiments is achieved. It is shown, that the proposed theory can predict the viscoelastic behavior of vitrifiable thermoplastic polyurethanes.  相似文献   
726.
含基体横向损伤的黏弹性板的蠕变后屈曲分析   总被引:2,自引:0,他引:2  
基于Schapery三维黏弹性损伤本构关系,引入沈为和Kachanov损伤演化方程,建立了基体横向损伤的纤维单一方向铺设黏弹性板的损伤模型;应用von Karman板理论,导出了考虑损伤效应的具初始挠度的纤维单一方向铺设黏弹性矩形板的非线性压屈平衡方程. 对未知变量在空间上采用差分法离散,时间上采用增量算法和Newton-Cotes积分法离散,控制方程被迭代求解. 算例中讨论了损伤以及有关参数对黏弹性复合材料板后屈曲行为的影响,且与已有文献的结果进行了比较. 数值结果表明:随着外载荷或者初始挠度的增大,板后屈曲趋于稳定时的挠度就愈大,损伤的影响愈明显;而随着长宽比的增大,板后屈曲趋于稳定时的挠度愈小,损伤的影响却随之增大.  相似文献   
727.
This paper deals with blood fiow caused by microvascular vasomotion with the focus on the effects of blood viscoelasticity on the pressure rise and wall resistance. It is shown that rnicrovascular vasomotion plays a role of the "second heart" of the body which is of importance in conveying blood, and that the effects of blood viscoelasticity greatly depend on the Weissenberg number and mean flow rate.  相似文献   
728.
729.
The viscoelastic behavior of amorphous ethylene–styrene interpolymers (ESIs) was studied in the glass transition region. The creep behavior at temperatures from 15°C below the glass transition temperature (Tg) to Tg was determined for three amorphous ESIs. These three copolymers with 62, 69, and 72 wt % styrene had glass transition temperatures of 11, 23, and 33°C, respectively, as determined by DMTA at 1 Hz. Time–temperature superposition master curves were constructed from creep curves for each polymer. The temperature dependence of the shift factors was well described by the WLF equation. Using the Tg determined by DMTA at 1 Hz as a reference temperature, C1 and C2 constants for the Williams, Landel, and Ferry (WLF) equation were calculated as approximately 7 and 40 K, respectively. The master curves were used to obtain the retardation time spectrum and the plateau compliance. The entanglement molecular weight obtained from the plateau compliance increased with increasing styrene content as 1,600, 1,870, and 2,040, respectively. The entanglement molecular weight of the ESIs was much closer to that of polyethylene (1,390) than to that of polystyrene (18,700); this was attributed to the unique chain microstructure of these ESIs with no styrene–styrene dyads. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 2373–2382, 1999  相似文献   
730.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号