首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   726篇
  免费   31篇
  国内免费   63篇
化学   239篇
晶体学   1篇
力学   383篇
综合类   1篇
数学   114篇
物理学   82篇
  2024年   2篇
  2023年   2篇
  2022年   7篇
  2021年   6篇
  2020年   11篇
  2019年   14篇
  2018年   19篇
  2017年   16篇
  2016年   20篇
  2015年   17篇
  2014年   15篇
  2013年   45篇
  2012年   17篇
  2011年   20篇
  2010年   12篇
  2009年   33篇
  2008年   39篇
  2007年   47篇
  2006年   41篇
  2005年   36篇
  2004年   43篇
  2003年   30篇
  2002年   30篇
  2001年   30篇
  2000年   31篇
  1999年   21篇
  1998年   33篇
  1997年   30篇
  1996年   21篇
  1995年   20篇
  1994年   17篇
  1993年   19篇
  1992年   15篇
  1991年   9篇
  1990年   7篇
  1989年   5篇
  1987年   2篇
  1986年   7篇
  1985年   7篇
  1984年   6篇
  1983年   1篇
  1982年   12篇
  1981年   4篇
  1977年   1篇
排序方式: 共有820条查询结果,搜索用时 31 毫秒
21.
The viscoelastic properties of single poly(ethylene glycol) (PEG) molecules were measured by analysis of thermally and magnetically driven oscillations of an atomic force microscope (AFM) cantilever/molecule system. The molecular and monomer stiffness and friction of the PEG polymer were derived using a simple harmonic oscillator (SHO) model. Excellent agreement between the values of these two parameters obtained by the two approaches indicates the validity of the SHO model under the experimental regimes and the excellent reproducibility of the techniques. A sharp minimum in the monomeric friction is seen at around 180 pN applied force which we propose is due to a force induced change in the shape of the energy landscape describing the conformational transition of PEG from a helical to a planar state, which in turn affects the timescale of the transition and therefore modifies the measured internal friction. A knowledge of the viscoelastic response of PEG monomers is particularly important since PEG is widely used as a linker molecule for tethering groups of interest to the AFM tip in force spectroscopy experiments, and we show here that care must be exercised because of the force-dependent viscoelastic properties of these linkers.  相似文献   
22.
In single‐molecule force spectroscopy (SMFS), many studies have focused on the elasticity and conformation of polymer chains, but little attention has been devoted to the dynamic properties of single polymer chains. In this study, we measured the energy dissipation and elastic properties of single polystyrene (PS) chains in toluene, methanol, and N,N‐dimethylformamide using a homemade piezo‐control and data acquisition system externally coupled to a commercial atomic force microscope (AFM), which provided more accurate information regarding the dynamic properties of the PS chains. We quantitatively measured the chain length‐dependent changes in the stiffness and viscosity of a single chain using a phenomenological model consistent with the theory of viscoelasticity for polymer chains in dilute solution. The effective viscosity of a polymer chain can be determined using the Kirkwood model, which is independent of the intrinsic viscosity of the solvent and dependent on the interaction between the polymer and solvent. The results indicated that the viscosity of a single PS chain is dominated by the interaction between the polymer and solvent. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 1736–1743  相似文献   
23.
In this paper we are interested in developing constitutive equations for fiber-reinforced nonlinearly viscoelastic solids. It has been shown that constitutive equations for such bodies can be expressed in terms of a complete minimal set of 18 classical invariants associated with deformation and fiber orientation. In this paper, we give an alternative formulation using a set of spectral invariants. It is shown via the use of spectral invariants that only 11 of the 18 classical invariants are independent. We analyze the spectral invariants for two illustrative deformation gradients: (i) simple tension, and (ii) simple shear.  相似文献   
24.
Various composites have been proposed in the literature for the fabrication of bioscaffolds for bone tissue engineering. These materials include poly(ε‐caprolactone) (PCL) with hydroxyapatite (HA). Since the biomaterial acts as the medium that transfers mechanical signals from the body to the cells, the fundamental properties of the biomaterials should be characterized. Furthermore, in order to control the processing of these materials into scaffolds, the characterization of the fundamental properties is also necessary. In this study, the physical, thermal, mechanical, and viscoelastic properties of the PCL‐HA micro‐ and nano‐composites were characterized. Although the addition of filler particles increased the compressive modulus by up to 450%, the thermal and viscoelastic properties were unaffected. Furthermore, although the presence of water plasticized the polymer, the viscoelastic behavior was only minimally affected. Testing the composites under various conditions showed that the addition of HA can strengthen PCL without changing its viscoelastic response. The results found in this study can be used to further understand and approximate the time‐dependent behavior of scaffolds for bone tissue engineering. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
25.
Based on the theory and application developments of polymer flooding on enhancing oil recovery, an improved mathematical model has been developed to simulate the mechanism of viscous-elastic polymer flooding. IMPES method has been presented to solve the polymer flooding model considering the viscosifying effect of elasticity, the effect of decreasing residual oil and the degradation of polymer molecules. The validation of the model is approved by an experiment. A simulation example was carried out using the developed numerical simulator. The enhanced oil recovery mechanism was discussed for viscous-elastic polymer flooding, and corresponding influencing factors were also studied.  相似文献   
26.
利用悬挂滴方法研究了Gemini季铵盐表面活性剂(C12-Ph-C12和C12-8-C12)和阿拉伯树胶的界面张力和界面扩张流变性质, 考察了阿拉伯树胶对C12-Ph-C12和C12-8-C12溶液界面张力和界面扩张流变性质的影响. 研究结果表明, 1%(w)阿拉伯树胶的加入显著降低了C12-Ph-C12和C12-8-C12的界面张力, 但是界面扩张模量增加,这一变化主要是由于阿拉伯树胶分子与Gemini季铵盐表面活性剂分子通过静电相互作用形成复合物. 文中提出了不同结构Gemini季铵盐表面活性剂与阿拉伯树胶分子在界面排布的示意图.  相似文献   
27.
The foam stability (drainage half-life) of α-olefin sulfonate (AOS) with partially hydrolyzed polyacrylamide (HPAM) or xanthan gum (XG) solution was evaluated by the Warring Blender method. With the increase of polymer (HPAM or XG) concentration, foam stability of the surfactant–polymer complexes increased, and the drainage half-life of AOS-XG foam was higher than that of AOS-HPAM foam at the same polymer and surfactant concentration. With the addition of polymer (HPAM or XG), the viscoelasticity of bulk solution and the liquid film were enhanced. The viscoelasticity of AOS-XG bulk solution and liquid film were both higher than that of AOS-HPAM counterparts.   相似文献   
28.
To capture viscoelastic behavior of polymeric damping materials based on limited dynamic mechanical analysis tests, a simple fractional temperature spectrum model representing the viscoelastic materials is proposed in this paper and experimental tests aims at stressing the validity of the model. The storage modulus, the loss modulus, and the loss factor, are established based on the five-parameter fractional derivative model and the time–temperature superposition principle. The dynamic mechanical tests of two polymeric materials are carried out to verify this temperature spectrum model. Results indicate a good agreement between the temperature spectrum model and experimental tests at various temperature conditions. Furthermore, thermodynamic coupling of the viscoelastic material is investigated by temperature rise calculation and vibration experiment test. Comparison analysis shows that the temperature rise model can simulate the temperature rise process for the shear vibration of the constrained damping, which provide references for the damping capability, thermal damage and failure of viscoelastic material.  相似文献   
29.
Abstract

The present article provides a review on the nonlinear mechanical behavior of polymer matrix composites (PMCs). Initially, essential mechanisms driving the nonlinear response of PMCs under different loading conditions are discussed. Rate-dependence, tension-compression asymmetry, viscous behavior, unloading characteristics, interaction between stress components and effects of environmental factors on mechanical properties are briefly reviewed. This is followed by a review of major approaches and constitutive models for predicting stress–strain behavior of PMCs. Following an increasing degree of complexity, models are categorized into four major classes: nonlinear elasticity models, elastic-plastic models, elastic-plastic-viscous models and Damage-Plasticity models. The vast number of existing models is mainly due to the anisotropy and inhomogeneity of PMCs. In brief, this review focuses on informing the reader of major frameworks, rather than addressing all the models in detail.  相似文献   
30.
不可压缩超弹性止水材料的粘弹性计算方法研究   总被引:1,自引:0,他引:1  
发展改进了研究不可压缩超弹性材料的Mooney-Rivlin公式,把材料参数假设成是随时间变化的粘弹性函数,并讨论了粘弹性函数的推导方法,通过工程实例进行了实验计算,并将计算结果与应力松弛试验进行了比较.结果表明,用改进Mooney-Rivlin公式可以简便有效地计算该类材料的粘弹性问题,为解决工程实际问题提供了新的途径.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号