首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12623篇
  免费   773篇
  国内免费   767篇
化学   13262篇
晶体学   144篇
力学   6篇
综合类   26篇
数学   152篇
物理学   573篇
  2023年   92篇
  2022年   207篇
  2021年   298篇
  2020年   425篇
  2019年   339篇
  2018年   282篇
  2017年   274篇
  2016年   370篇
  2015年   264篇
  2014年   332篇
  2013年   750篇
  2012年   1334篇
  2011年   505篇
  2010年   447篇
  2009年   623篇
  2008年   704篇
  2007年   856篇
  2006年   656篇
  2005年   609篇
  2004年   591篇
  2003年   496篇
  2002年   405篇
  2001年   361篇
  2000年   353篇
  1999年   333篇
  1998年   288篇
  1997年   285篇
  1996年   307篇
  1995年   311篇
  1994年   210篇
  1993年   182篇
  1992年   152篇
  1991年   102篇
  1990年   62篇
  1989年   49篇
  1988年   51篇
  1987年   42篇
  1986年   37篇
  1985年   29篇
  1984年   31篇
  1983年   12篇
  1982年   26篇
  1981年   14篇
  1980年   17篇
  1979年   12篇
  1978年   7篇
  1977年   7篇
  1975年   4篇
  1974年   3篇
  1973年   6篇
排序方式: 共有10000条查询结果,搜索用时 46 毫秒
181.
As bio‐inspired chemical model of the oxygen‐evolving complex (OEC) in photosystem II, a new tyrosine‐modified corrole ligand 3 and its high‐valent copper and manganese complexes 3a and 3b were synthesized and characterized. The copper complexes 1a and 2a of corrole 1 and 2 were also prepared for comparison. The emission property indicates that the emission of ligands 2 and 3 is located at 670 nm, but no emission is observed for their metal complexes due to its suppression by the metal center. The electrochemical study shows that 3a might dimerize at the first two reversible oxidations, a behavior which was not observed in the case of 1a and 2a . The corrolato manganese(IV) complex 3b shows one reversible reduction and one quasireversible oxidation at ?0.17 and 0.77 V vs. Ag/Ag+, respectively.  相似文献   
182.
The halothane???acetone and fluoroform???acetone complexes are studied using the second‐order Møller–Plesset (MP2) method with a cc‐pVTZ basis set and the density functional theory (DFT) method with a TZVP basis set. Whereas halothane exhibits a small red shift upon complexation, fluoroform shows a pronounced blue shift. To explain this difference in behavior, we perform symmetry‐adapted perturbation theory (SAPT) and natural bond orbital (NBO) analyses. Although the composition of the total stabilization energy of each complex is different, that alone does not provide a satisfactory explanation for the difference in the spectral shifts. This difference is interpreted as a result of the interplay of the hyperconjugation and rehybridization mechanisms. The small and surprising red shift of the C? H stretching frequency of halothane, which resulted from the complexation of this species with acetone,is explained by the compensation of the two above‐mentioned mechanisms. On the other hand, the fluoroform???acetone complex exhibits a blue shift of the C? H stretching frequency upon complexation, the most likely reason for this shift being a concerted occurrence of the hyperconjugation and rehybridization mechanisms. The calculated shift of the C? H stretching vibration frequencies of halothane (+27 cm?1) agree with the experimental value of +5 cm?1.  相似文献   
183.
The relation of thermodynamic stability and kinetic lability of σ-organometallic compounds of transition metals, together with an improved understanding of the subtle interactions between central metal, ligands, and substrates, has increased the chemist's ability to plan organometallic syntheses. This article presents new results on intermediary and isolable synthetic building blocks incorporating metal–ligand multiple bonds of electron-deficient transition metals; the main emphasis will be placed on compounds with titanium–carbon double bonds. This particular class of compounds is mainly generated by H-transfer reactions starting from readily accessible alkyl and alkenyl derivatives. The preparative use of [L2Ti(CHR2)R′] derivatives as sources for [L2Ti?CR2] intermediates will be discussed, as well as the nature of these intermediates. Application of the same approach to vinyltitanium compounds [L2Ti(CH?CH2)R] opens up an access to a short-lived metallaallene derivative [L2Ti?C?CH2] of an electron-deficient transition metal. The reactivity of these synthetic building blocks is mainly characterized by the nucleophilic properties of the α-C atoms as well as by the spatial orientation of the π-bonding planes. Numerous cycloaddition products with unsaturated substrates could be isolated and characterized for the first time by using [L2Ti?C?CH2] intermediates. Hence it is possible to compare the properties of a multitude of metallacyclic ring systems with those obtained from “Tebbe–Grubbs chemistry”, and in this context, the dependence of the properties of metallacyclic four-membered rings on the substitution pattern is discussed. This class of compounds includes the metallaoxetanes, which have been obtained for the first time by the cycloaddition of the [CpTi?C?CH2] intermediate with cumulenes and metal carbonyls. The differing cycloreversion behavior of these metallaoxetanes enables the differentiation of species exhibiting classical and nonclassical reactivity. The number and position of the exocyclic double bonds are the determining factors of the reactivity of the formed metallacycles. The discussion of the products obtained from titanium methylene and vinylidene building blocks is an up-to-date report on the formation and applications of carbene complexes and carbene intermediates of group 4 metals.  相似文献   
184.
Hydrazo-carbonates are complex compounds and products of the reactions between solutions of metal ion and solutions of hydrazido-carbonic acid. The decomposition of Mg(N2H3COO)2. 2H2O, Ca(N2H3COO)2·H2O and Zn(N2H3COO)2 in inert atmosphere were studied. By classical thermoanalytical methods and data on the composition of the intermediates and final products the mechanisms of the thermal decomposition could not be resolved therefore also evolved gas analysis was used (EGA). The first step of thermal decomposition of Ca and Mg hydrazidocarbonates is dehydration. With the heating the decomposition of the hydrazido-carbonates proceeds under evolution of the ammonia, carbon monoxide and/or nitrogen and carbon dioxide giving as the intermediates for calcium and magnesium compounds the corresponding carbonates oxides as the final products. The zinc compound decomposes to the oxide, ZnO but also zinc cyanamide was detected during to the thermal treatment.  相似文献   
185.
The new 1,2,4-benzenetricarboxylates of lanthanide(III) of the formula Ln(btc)·nH2O, where btc is 1,2,4-benzenetricarboxylate; Ln is La-Lu, and n=2 for Ce; n=3 for La, Yb, Lu; and n=4 for Pr-Tm were prepared and characterized by elemental analysis, infrared spectra and X-ray diffraction patterns. Polycrystalline complexes are isotructural in the two groups: La-Tm and Yb, Lu. IR spectra of the complexes show that all carboxylate groups from 1,2,4-benzentricarboxylate ligands are engaged in coordination of lanthanide atoms. The thermal analysis of the investigated complexes in air atmosphere was carried out by means of simultaneous TG-DTA technique. The complexes are stable up to about 30°C but further heating leads to stepwise dehydration. Next, anhydrous complexes decompose to corresponding oxides. The combined TG-FTIR technique was employed to study of decomposition pathway of the investigated complexes.  相似文献   
186.
Supercritical carbon dioxide (scCO2)offers several attractive scenarios for thepharmaceutical processing as an alternativeto aqueous and organic solvents. In thiswork naproxen, a widely used non steroidalanti-inflammatory drug with analgesic andanti-inflammatory properties, was chosenas a model drug. Its complexation with cyclodextrinsimproves the rate and extent of dissolutionof the drug, increase its rate of absorption and mayreduce the unpleasant side-effects of the drug.The interest in using this supercritical technologyled us to develop an experimental unit for the useof supercritical CO2 as a processing medium forthe complexation of naproxen with beta cyclodextrin (CD).  相似文献   
187.
The hydrogen bonding complexes HO(H2O)n (n = 1–3) were completely investigated in the present study using DFT and MP2 methods at varied basis set levels from 6‐31++G(d,p) to 6‐311++G(2d,2p). For n = 1 two, for n = 2 two, and for n = 3 five reasonable geometries are considered. The optimized geometric parameters and interaction energies for various complexes at different levels are estimated. The infrared spectrum frequencies and IR intensities of the most stable structures are reported. Finally, thermochemistry studies are also carried out. The results indicate that the formation and the number of hydrogen bonding have played an important role in the structures and relative stabilities of different complexes. © 2004 Wiley Periodicals, Inc. Int J Quantum Chem, 2005  相似文献   
188.
Zinc Complexes of a New N, N, O Ligand The tridentate ligand N, N(2‐dimethylaminoethyl)‐3, 5‐di‐tert.‐butyl‐salicylaldimine ( L H) results from the corresponding salicylic aldehyde and N, N‐dimethyl ethylenediamine. With zinc salts it forms the mononuclear halide complexes [ L ZnCl ˙ CH3OH] ( 1 ) and [ L ZnI ˙ CH3OH] ( 2 ) and the presumably polymeric acetate [ L ZnOCOCH3] ( 3 ). With diethyl zinc and diphenylphosphoric acid it yields the phosphate complex [ L Zn‐OPO(OPh)2 ˙ CH3OH] ( 4 ). The coordination of the complexes, which is between trigonal bipyramidal and square pyramidal, and the character of the five donors in the phosphate complex represent the transition state of a hydrolytic substrate cleavage in a zinc enzyme.  相似文献   
189.
A pressure‐controlled procedure for the SN1 reaction of rac‐1‐[(dimethylamino)methyl]‐2‐(tributylstannyl)ferrocene ( 1 ) to rac‐1‐(phthalimidomethyl)‐2‐(tributylstannyl)ferrocene ( 2 ) was developed. Pd0‐Catalyzed Stille coupling of 2 with iodobenzene afforded rac‐1‐phenyl‐2‐(N‐phthalimidomethyl)ferrocene ( 5 ) in 74% yield; after trace enrichment by crystallization of the combined mother liquors, one single crystal of each, 5 , catalysis intermediate trans‐iodo(σ‐phenyl)bis(triphenylarsino)palladium(II) ( 7 ), trans‐diiodobis(triphenylarsino)palladium(II) ( 8 ), and rac‐2,2′‐bis(phthalimidomethyl)‐1,1′‐biferrocene ( 9 ) could be isolated by crystal sorting under a microscope and characterized by X‐ray crystal structure analysis. Furthermore, 5 was deprotected to amine ( 11 ), which does even survive the Birch reduction to rac‐1‐(aminomethyl)‐2‐(cyclohexa‐2,5‐dienyl)ferrocene ( 12 ).  相似文献   
190.
The versatile coordination chemistry of the well‐investigated phosphoraneiminato‐ligand R3PN ( I ) was extended by the successive introduction of protons to the phosphorus atom. The position of the resulting equilibrium between the NH‐phosphanylamido‐ [R2P‐NH] and the PH‐phosphoraneiminato‐form [R2HP=N] is affected by the Lewis acidity of the coordinated metal fragment. Experimental studies on complexes with various substitution patterns at the group 4 metal center R2HP=N[M] ( II ) were unambiguously confirmed by DFT‐calculations. The isolation of group 4 PH‐dihydrido‐phosphoraneiminato‐complexes RH2P‐N[M] ( III ) is prevented by the low thermodynamic stability of the target molecules, also supported by the results of ab initio calculations. However, an access to the by then unknown transition‐metal substituted iminophosphanes RP=N[M] ( IV ) was verified for the first time. Within extensive studies on the coordination chemistry of bis(imino)phosphoranes RP(=NR′)(=NR″), several species of group 4 complexes R(R′N=)P=N[M] ( V ) were isolated and structurally characterized. In this case, investigations on the NH/PH‐tautomerism were performed exclusively on theoretical level, because the required educts are experimentally non‐accessible due to their kinetic instability.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号