首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   157篇
  免费   12篇
  国内免费   2篇
化学   154篇
力学   1篇
物理学   16篇
  2022年   7篇
  2021年   20篇
  2020年   8篇
  2019年   21篇
  2018年   3篇
  2017年   4篇
  2016年   14篇
  2015年   9篇
  2014年   3篇
  2013年   15篇
  2012年   14篇
  2011年   7篇
  2010年   6篇
  2009年   12篇
  2008年   10篇
  2007年   4篇
  2006年   5篇
  2005年   5篇
  2004年   2篇
  2003年   1篇
  1998年   1篇
排序方式: 共有171条查询结果,搜索用时 46 毫秒
71.
Rosales C 《Electrophoresis》2006,27(10):1984-1995
We present a systematic numerical analysis of the thermal properties of dielectrophoretic single-cell traps. The influence of the thermal conductivity of the wall material is investigated, as well as the influence of the electrical conductivity of the liquid and the applied potential. We also explore the effect of the electrode geometry on the thermal properties of the trap. We show that substrates with thermal conductivities smaller than 100 W/mK can affect significantly the temperature increase inside the traps. Our results also show, for the first time, that for flat electrodes there is an optimum electrode to trap surface area ratio for which the ratio of temperature increase in the liquid to dielectrophoretic force on a particle can be minimized. This result will be useful in the future development of optimized dielectrophoretic traps.  相似文献   
72.
73.
AC electroosmotic (ACEO) flow above the gap between coplanar electrodes is mapped by the measurement of Stokes forces on an optically trapped polystyrene colloidal particle. E2‐dependent forces on the probe particle are selected by amplitude modulation (AM) of the ACEO electric field (E) and lock‐in detection at twice the AM frequency. E2‐dependent DEP of the probe is eliminated by driving the ACEO at the probe's DEP crossover frequency. The location‐independent DEP crossover frequency is determined, in a separate experiment, as the limiting frequency of zero horizontal force as the probe is moved toward the midpoint between the electrodes. The ACEO velocity field, uncoupled from probe DEP effects, was mapped in the region 1–9 μm above a 28 μm gap between the electrodes. By use of variously sized probes, each at its DEP crossover frequency, the frequency dependence of the ACEO flow was determined at a point 3 μm above the electrode gap and 4 μm from an electrode tip. At this location the ACEO flow was maximal at ~117 kHz for a low salt solution. This optical trapping method, by eliminating DEP forces on the probe, provides unambiguous mapping of the ACEO velocity field.  相似文献   
74.
This paper presents the application of the discrete dielectrophoretic force to separate polystyrene particles from red blood cells. The separation process employs a simple microfluidic device that is composed of interdigitated electrodes and a microchannel. The discrete dielectrophoretic force is generated by adjusting the duty cycle of the applied voltage. The electrodes make a tilt angle with the microchannel to change the moving direction of the red blood cells. By adjusting the voltage magnitude and duty cycle, we investigate the deflection of red blood cells and the variation of cell velocity along electrode edge under positive dielectrophoresis. The experiments with polystyrene particles show that the enrichment of the particles is greater than 150 times. The maximum separation efficiency is 97% for particle-to-cell number ratio equal to 1:2000 in the sample having high cell concentration. Using the appropriate applied voltage magnitude and duty cycle, the discrete dielectrophoretic force can prevent the clogging of microchannel while successfully separating the particles from the cells with high enrichment and efficiency. The proposed principle can be readily applied to dielectrophoresis-based devices for biomedical sample preparation or diagnosis such as the separation of rare or infected cells from a blood sample.  相似文献   
75.
A model system consisting of a mixture of latex beads and erythrocytes has been investigated to demonstrate the practical feasibility of particle separation by means of the combined application of negative dielectrophoresis and hyperlayer field-flow fractionation. The dielectrophoretic levitation of latex beads is demonstrated by energizing interdigitated electrodes, of widths and separation ranging from 5 to 40 μm, with AC signals of 0–10 V (rms) in the frequency range 1 kHz–10 MHz. Maximum levitation was attained at 1 MHz, at which frequency levitation is relatively independent of the suspending medium conductivity. Levitation was also independent of particle size, but dependent on particle density and dielectric properties. At 1 MHz the erythrocytes were attracted to the electrodes by positive dielectrophoresis, and so could be separated from the latex beads by fluid flow. The electric field and field gradient above the electrodes were also computer modelled, and this information was used to design the electrode and chamber geometries for optimum DEP-field-flow fractionation.  相似文献   
76.
Tsai SL  Hong JL  Chen MK  Jang LS 《Electrophoresis》2011,32(11):1337-1347
This work presents a microfluidic system that can transport, concentrate, and capture particles in a controllable droplet. Dielectrophoresis (DEP), a phenomenon in which a force is exerted on a dielectric particle when it is subjected to a non-uniform electric field, is used to manipulate particles. Liquid dielectrophoresis (LDEP), a phenomenon in which a liquid moves toward regions of high electric field strength under a non-uniform electric field, is used to manipulate the fluid. In this study, a mechanism of droplet creation presented in a previous work that uses DEP and LDEP is improved. A driving electrode with a DEP gap is used to prevent beads from getting stuck at the interface between air and liquid, which is actuated with an AC signal of 200 V(pp) at a frequency of 100 kHz. DEP theory is used to calculate the DEP force in the liquid, and LDEP theory is used to analyze the influence of the DEP gap. The increment of the actuation voltage due to the electrode with a DEP gap is calculated. A set of microwell electrodes is used to capture a bead using DEP force, which is actuated with an AC signal of 20 V(pp) at a frequency of 5 MHz. A simulation is carried out to investigate the dimensions of the DEP gap and microwell electrodes. Experiments are performed to demonstrate the creation of a 100-nL droplet and the capture of individual 10-μm polystyrene latex beads in the droplet.  相似文献   
77.
Lead zirconate titanate (PZT) microtubes were assembled onto pre-patterned substrates using dielectrophoresis of a colloidal suspension of microtubes dispersed in isopropyl alcohol. High aspect ratio tubes with an outer diameter of 2 μm and length of about 30 μm were prepared by vacuum infiltration of mesoporous silicon templates. An interdigitated electrode structure with gap sizes ranging from 2 μm to 15 μm was patterned on a silicon substrate via conventional lithography. This allowed a non-uniform alternating electric field to be generated. The influence of the electrode gap along with the effects of the waveform, amplitude and frequency of an applied signal on the dielectrophoretic assembly of PZT microtubes was investigated. A square wave signal of 5 and 10 Hz was found to be the most effective in assembling the microtubes on a 12 μm electrode gap. The results show potential for the dielectrophoretic technique in realizing integrated 3D devices using the high aspect ratio piezoelectric tube structures as building blocks.  相似文献   
78.
Any single permanent magnet or electromagnet will always attract a magnetic fluid. For this reason it is difficult to precisely position and manipulate ferrofluid at a distance from magnets. We develop and experimentally demonstrate optimal (minimum electrical power) 2-dimensional manipulation of a single droplet of ferrofluid by feedback control of 4 external electromagnets. The control algorithm we have developed takes into account, and is explicitly designed for, the nonlinear (fast decay in space, quadratic in magnet strength) nature of how the magnets actuate the ferrofluid, and it also corrects for electromagnet charging time delays. With this control, we show that dynamic actuation of electromagnets held outside a domain can be used to position a droplet of ferrofluid to any desired location and steer it along any desired path within that domain—an example of precision control of a ferrofluid by magnets acting at a distance.  相似文献   
79.
The control of flow in microscale is one of the most important problems in microfluidic devices, which in particular, are used as micro heat exchangers. The use of electric field is one of the efficient methods of control of dielectric liquid flow in microscale. The electric field influences liquid flow by the EHD force which affects liquid behaviour in terms of the flow rate and pressure.The EHD force consists of three components: the first is the electrostatic force due to free charges present in the liquid, the next one is the force due to the gradient of permittivity of material, and the third one is caused by the change in the electric field intensity.The EHD force is used also in many commercial devices, for example EHD pumps or dielectrophoretic separators. An own approach to apply the EHD force to control the liquid flow rate is presented in this paper. Authors paid a close attention to the dielectrophoresis effect. Dielectric liquid in a non-uniform electric field tends to drift/migrate towards the region of high electric field intensity. With decreasing the electrode dimensions, the dielectrophoresis force becomes relatively stronger. For the dimensions under 400 μm the dielectrophoresis phenomenon can be used for control and actuation of the liquid flow in microchannels. The originally developed design of such flow controller is presented in this paper. The experimental investigations covered flow rate measurement of 2-propanol in microchannel flow controller with application of AC field. It was showed that the dielectrophoresis phenomenon could effectively control the flow. The results for distilled water are also comparatively discussed in the paper.  相似文献   
80.
Dielectrophoresis can move small particles using the force resulting from their polarization in a divergent electric field. In liquids, it has most often been applied to micrometric objects such as biological cells or latex microspheres. For smaller particles, the dielectrophoretic force becomes very small and the phenomenon is furthermore perturbed by Brownian motion. Whereas dielectrophoresis has been used for assembly of superstructures of nanoparticles and for the detection of proteins and nucleic acids, the mechanisms underlying DEP of such small objects require further study. This work presents measurements of the alternating-current (AC) dielectrophoretic response of gold nanoparticles of less than 200 nm diameter in water. An original dark-field digital video-microscopic method was developed and used in combination with a microfluidic device containing transparent thin-film electrodes. It was found that the dielectrophoretic force is only effective in a small zone very close to the tip of the electrodes, and that Brownian motion actually facilitates transport of particles towards this zone. Moreover, the fact that particles as small as 80 nm are still efficiently captured in our device is not only due to Brownian transport but also to an effective polarizability that is larger than what would be expected on basis of current theory for a sphere in a dielectric medium.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号