首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   157篇
  免费   12篇
  国内免费   2篇
化学   154篇
力学   1篇
物理学   16篇
  2022年   7篇
  2021年   20篇
  2020年   8篇
  2019年   21篇
  2018年   3篇
  2017年   4篇
  2016年   14篇
  2015年   9篇
  2014年   3篇
  2013年   15篇
  2012年   14篇
  2011年   7篇
  2010年   6篇
  2009年   12篇
  2008年   10篇
  2007年   4篇
  2006年   5篇
  2005年   5篇
  2004年   2篇
  2003年   1篇
  1998年   1篇
排序方式: 共有171条查询结果,搜索用时 15 毫秒
31.
对电泳液中颜料粒子运动性能的研究   总被引:3,自引:0,他引:3  
详细介绍了胶体悬浮液作为一种显示用电泳液时的电学性能,分析了电泳颗粒的运动特征;针对目前有些文献中提到的介电泳现象以及利用介电泳现象制成的无源矩阵驱动方式,从理论角度进行了分析。指出介电泳现象在理论上确实存在,但是绝大多数的电泳液在显示时介电泳现象都很微弱,很难实现廉价、大面积的无源矩阵驱动;最后以一种电泳液为例测试了其反射谱,从实验角度验证了此结论, 并给出了最佳的驱动参数。  相似文献   
32.
This paper demonstrates the utilization of 3D semispherical shaped microelectrodes for dielectrophoretic manipulation of yeast cells. The semispherical microelectrodes are capable of producing strong electric field gradients, and in turn dielectrophoretic forces across a large area of channel cross‐section. The semispherical shape of microelectrodes avoids the formation of undesired sharp electric fields along the structure and also minimizes the disturbance of the streamlines of nearby passing fluid. The advantage of semispherical microelectrodes over the planar microelectrodes is demonstrated in a series of numerical simulations and proof‐of‐concept experiments aimed toward immobilization of viable yeast cells.  相似文献   
33.
Ying-Jie Lo  U Lei 《Electrophoresis》2020,41(1-2):137-147
A method is proposed for measuring the real part of the Clausius–Mossotti factor () of dielectrophoresis for Brownian particles based on a solution of the Smoluchowski equation using a designed polydimethysilloxane microchannel with planar hyperbolic electrodes on its glass substrate. An approximate two-dimensional spring-like dielectrophoretic force is generated in the device, and the data necessarily measured is the time evolution of the in-plane particle displacement undergoing confined Brownian motion. Validity of the measurement was checked against the zeta potentials in the literature based on the classical theory of surface conductance using polystyrene particles of size of one micron. As the dielectrophoretic force depends on , which is usually unknown for bio-particles and some engineered particles, and is seldom measured; this study is important from the academic point of view and could be helpful for the manipulation and characterization of sub-micron particles using dielectrophoresis. Extension of the method to the measurement of permanent dipole moment and total polarizability of particle was developed theoretically and discussed by incorporating an optical tweezer into the present device.  相似文献   
34.
An ultrasonic standing wave trap [Langmuir 19 (2003) 3635] in which the morphologies of 2-D latex–microparticle aggregates, forming a pressure node plane, were characterised has been applied here to different cell suspensions with increasing order of specificity of cross-linking molecule, i.e. polylysine with chondrocytes; wheat germ agglutinin (WGA) with erythrocytes and surface receptors on neural cells. The outcome of initial cell–cell contact, i.e. whether the cells stuck at the point of contact (collision efficiency=1) or rolled around each other (collision efficiency=0), was monitored in situ by video-microscopy. The perimeter fractal dimensions (FD) of 2-D hexagonally symmetric, closely packed aggregates of control erythrocytes and chondrocytes were 1.16 and 1.18, respectively while those for the dendrititc aggregates formed initially by erythrocytes in 0.5 μg/ml WGA and chondrocytes in 20 μg/ml polylysine were 1.49 and 1.66. The FDs for control and molecularly cross-linked cells were typical of reaction-limited aggregation (RLA) and transport diffusion-limited aggregation (DLA), respectively. The FDs of the aggregates of cross-linked cells decreased with time to give more closely packed aggregates without clear hexagonal symmetry. Suspensions of neural cells formed dendritic aggregates. Spreading of inter-cellular membrane contact area occurred over 15 min for both erythrocyte and neural cell dendritic aggregates. The potential of the technique to characterise and control the progression of cell adhesion in suspension away from solid substrata is discussed.  相似文献   
35.
Microfluidic device embedding electrodes realizes cell manipulation with the help of dielectrophoresis. Cell manipulation is an important technology for cell sorting and cell population purification. Till now, the theory of dielectrophoresis has been greatly developed. Microfluidic devices with various arrangements of electrodes have been reported from the beginning of the single non‐uniform electric field to the later multiple physical fields. This paper reviews the research status of microfluidic device embedding electrodes for cell manipulation based on dielectrophoresis. Firstly, the working principle of dielectrophoresis is explained. Next, cell manipulation approaches based on dielectrophoresis are introduced. Then, different types of electrode arrangements in the microfluidic device for cell manipulation are discussed, including planar, multilayered and microarray dot electrodes. Finally, the future development trend of the dielectrophoresis with the help of microfluidic devices is prospected. With the rapid development of microfluidic technology, in the near future, high precision, high throughput, high efficiency, multifunctional, portable, economical and practical microfluidic dielectrophoresis will be widely used in the fields of biology, medicine, agriculture and so on.  相似文献   
36.
Manipulating bacteria and understanding their behavior when interacting with different substrates are of fundamental importance for patterning, detection, and any other topics related to health-care, food-enterprise, etc. Here, we adopt an innovative dielectrophoretic (DEP) approach based on electrode-free DEP for investigating smart but simple strategies for immobilization and orientation of bacteria. Escherichia coli DH5-alpha strain has been selected as subject of the study. The light induced DEP is achieved through ferroelectric iron-doped lithium niobate crystals used as substrates. Due to the photorefractive (PR) property of such material, suitable light patterns allow writing spatial-charges-distribution inside its volume and the resultant electric fields are able to immobilize E. coli on the surface. The experiments showed that, after laser irradiation, about 80% of bacteria is blocked and oriented along a particular direction on the crystals within an area of few square centimeters. The investigation presented here could open the way for detection or patterning applications based on a new driving mechanism. Future perspectives also include the possibility to actively switch by light the DEP forces, through the writing/erasing characteristic of PR fields, to dynamically control biofilm spatial structure and arrangement.  相似文献   
37.
Zhou R  Wang P  Chang HC 《Electrophoresis》2006,27(7):1376-1385
The high polarizability and dielectrophoretic mobility of single-walled carbon nanotubes (SWNT) are utilized to capture and detect low numbers of bacteria and submicron particles in milliliter-sized samples. Concentrated SWNT solutions are mixed with the sample and a high-frequency (>100 kHz) alternating current (AC) field is applied by a microelectrode array to enhance bulk absorption of the particles (bacteria and nanoparticle substitutes) by the SWNTs via dipole-dipole interaction. The same AC field then drives the SWNT-bacteria aggregates to the microelectrode array by positive-AC dielectrophoresis (DEP), with enhanced and reversed bacteria DEP mobility due to the attached SWNTs. Since the field frequency exceeds the inverse RC time of the electrode double layer, the AC field penetrates deeply into the bulk and across the electrode gap. Consequently, the SWNTs and absorbed bacteria assemble rapidly (<5 min) into conducting linear aggregates between the electrodes. Measured AC impedance spectra by the same trapping electrodes and fields show a detection threshold of 10(4) bacteria/mL with this pathogen trapping and concentration technique.  相似文献   
38.
The combination of alternating electric fields with nanometer‐sized electrodes allows the permanent immobilization of proteins by dielectrophoretic force. Here, atomic force microscopy is introduced as a quantification method, and results are compared with fluorescence microscopy. Experimental parameters, for example the applied voltage and duration of field application, are varied systematically, and the influence on the amount of immobilized proteins is investigated. A linear correlation to the duration of field application was found by atomic force microscopy, and both microscopical methods yield a square dependence of the amount of immobilized proteins on the applied voltage. While fluorescence microscopy allows real‐time imaging, atomic force microscopy reveals immobilized proteins obscured in fluorescence images due to low S/N. Furthermore, the higher spatial resolution of the atomic force microscope enables the visualization of the protein distribution on single nanoelectrodes. The electric field distribution is calculated and compared to experimental results with very good agreement to atomic force microscopy measurements.  相似文献   
39.
This study presents the dielectrophoretic (DEP) assembly of multi‐walled carbon nanotubes (MWCNTs) between curved microelectrodes for the purpose of trapping polystyrene microparticles within a microfluidic system. Under normal conditions, polystyrene particles exhibit negative DEP behaviour and are repelled from microelectrodes. Interestingly, the addition of MWCNTs to the system alters this situation in two ways: first, they coat the surface of particles and change their dielectric properties to exhibit positive DEP behaviour; second, the assembled MWCNTs are highly conductive and after the deposition serve as extensions to the microelectrodes. They establish an array of nanoelectrodes that initiates from the edge of microelectrodes and grow along the electric field lines. These nanoelectrodes can effectively trap the MWCNT‐coated particles, since they cover a large portion of the microchannel bottom surface and also create a much stronger electric field than the primary microelectrodes as confirmed by our numerical simulations. We will show that the presence of MWCNT significantly changes performance of the system, which is investigated by trapping sample polystyrene particles with plain, COOH and goat anti‐mouse IgG surfaces.  相似文献   
40.
介电电泳芯片及其在细胞分析中的应用   总被引:1,自引:0,他引:1  
简要阐述了在交流和直流电压电场中,介电电泳(DEP)芯片进行细胞分离富集的机理.按照驱动电场的差异对DEP芯片进行了分类,分析和比较了DEP芯片微电极的叉指电极、抛物线电极、堡式电极、三维电极等典型结构.特别对近年来DEP芯片在单细胞分析、细胞分离与富集以及临床细胞分析中的应用进展进行了综述,并对其应用前景和发展方向进行了展望.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号