排序方式: 共有171条查询结果,搜索用时 15 毫秒
21.
We investigate the behavior of fluorescing single-walled carbon nanotubes (SWCNTs) under dielectrophoretic conditions and demonstrate their collection with fluorescence microscopy. SWCNTs are dispersed in water with the aid of a nonionic surfactant, Triton X-100, and labeled through noncovalent binding with the dye 3,3'-dihexyloxacarbocyanine iodide (diOC(6)). The chromophore's affinity to the SWCNTs is due to pi-stacking interactions. Carbon nanotube (CNT) localization is clearly identified on the fluorescence images, showing that the nanotubes concentrate between the electrodes and align along the electric field lines. 相似文献
22.
One of the major applications for dielectrophoresis is selective trapping and fractionation of particles. If the surrounding medium is of low conductivity, the trapping force is high, but if the conductivity increases, the attraction decreases and may even become negative. However, high-conductivity media are essential when working with biological material such as living cells. In this paper, some basic calculations have been performed, and a model has been developed which employs both positive and negative dielectrophoresis in a channel with interdigitated electrodes. The finite element method was utilized to predict the trajectories of Escherichia coli bacteria in the superpositioned electrical fields. It is shown that a drastic improvement of trapping efficiency can be obtained in this way, when a high conductivity medium is employed. 相似文献
23.
Yasuhiro Tanaka Tatsuro Endo Yasuko Yanagida Takeshi Hatsuzawa 《Microchemical Journal》2009,91(2):232-238
In this paper, we describe the design and fabrication of a dielectrophoresis (DEP)-based cell-positioning and cell-culture device for the construction of cell networks. This device enables both individual cell positioning and cell culture. Titanium electrodes were fabricated by deposition. Furthermore, microchambers and microchannels composed of SU-8, which is a negative photoresist, were used to carry out cell culture and enable cell differentiation. Using our device, N1E-115 cells were individually positioned in the microchambers, and the positioning yield was 45%. After positioning, the cells could be continuously cultured in the microchambers. Furthermore, the cells differentiated, and their neurites extended through the microchannels after cultivation for several days. These results indicate that our device greatly increases the prospects for individual cell positioning and can be used to construct cell networks that have several applications in the medical field, for example, in drug screening. 相似文献
24.
Dielectrophoresis assisted immuno-capture and detection of foodborne pathogenic bacteria in biochips
This study integrated dielectrophoresis (DEP) with non-flow through biochips to enhance the immuno-capture and detection of foodborne pathogenic bacteria. It demonstrated two major functions provided by DEP to improve the chip performance: (i) concentrating bacterial cells from the suspension to different locations on the chip surface by positive and negative DEP; (ii) making the cells in close contact with the immobilized antibodies on the chip surface so that immuno-capture efficiency can be dramatically enhanced.The microchip achieved the immuno-capture efficiencies of ∼56.0% and ∼64.0% to Salmonella cells with 15 and 30 min DEP, respectively, which were considerably higher than those of ∼10.4% and ∼17.6% for 15 and 30 min immuno-capture without DEP. The immuno-captured bacterial cells were detected by the sandwich format ELISA on the chips. The final absorbance signals were enhanced by DEP assisted immuno-capture by 64.7-105.2% for the samples containing 103-106 cells/20 μl. The integration of DEP with the biochips has the potential to advance the chip-based immunoassay methods for microbial detection. 相似文献
25.
This paper presents detailed numerical calculations of the dielectrophoretic force in traps designed for single-cell trapping. A trap with eight planar electrodes is studied for spherical and ellipsoidal particles using the boundary element method (BEM). Multipolar approximations of orders one to three are compared with the full Maxwell stress tensor (MST) calculation of the electrical force on spherical particles. Ellipsoidal particles are also studied, but in their case only the dipolar approximation is available for comparison with the MST solution. The results show that a small number of multipolar terms need to be considered in order to obtain accurate results for spheres, even in the proximity of the electrodes, and that the full MST calculation is only required in the study of non-spherical particles. 相似文献
26.
Isomotive dielectrophoresis (isoDEP) is a unique DEP geometrical configuration where the gradient of the field-squared () is constant. IsoDEP analyzes polarizable particles based on their magnitude and direction of translation. Particle translation is a function of the polarizability of both the particles and suspending medium, the particles’ size and shape, and the frequency of the electric field. However, other electrokinetics act on the particles simultaneously, including electrothermal hydrodynamics. Hence, to maximize the DEP force relative to over electrokinetic forces, design parameters such as microchannel geometry, fabrication materials, and applied electric field must be properly tuned. In this work, scaling law analyses were developed to derive design rules, relative to particle diameter, to reduce unwanted electrothermal hydrodynamics relative to DEP-induced particle translation. For a particle suspended in 10 mS/m media, if the channel width and height are below ten particle diameters, the electrothermal-driven flow is reduced by ∼500 times compared to a channel that is 250 particles diameters in width and height. Replacing glass with silicon as the device's underlying substrate for an insulative-based isoDEP reduces the electrothermal induced flow approximately 20 times less. 相似文献
27.
We present an approach for the accumulation and filtering of nano- and microparticles in microfluidic devices that is based on the generation of electric traveling waves in the radio-frequency range. Upon application of the electric field via a microelectrode array, complex particle trajectories and particle accumulation are observed in well-defined regions in a microchannel. Through the quantitative mapping of the 3-D flow pattern using two-focus fluorescence cross-correlation spectroscopy, two vortices could be identified as one of the sources of the force field that induces the formation of particle clouds. Dielectrophoretic forces that directly act on the particles are the second source of the force field. A thorough 2-D finite element analysis identifies the electric traveling wave mechanism as the cause for the unexpected flow behavior observed. Based on these findings, strategies are discussed, first, for avoiding the vortices to optimize electrohydrodynamic micropumps and, secondly, for utilizing the vortices in the development of microdevices for efficient particle accumulation, separation, and filtering. Such devices may find numerous biomedical applications when highly diluted nano- and microsuspensions have to be processed. 相似文献
28.
Ozuna-Chacón S Lapizco-Encinas BH Rito-Palomares M Martínez-Chapa SO Reyes-Betanzo C 《Electrophoresis》2008,29(15):3115-3122
Dielectrophoresis (DEP), the motion of particles in nonuniform electric fields, is a nondestructive electrokinetic (EK) transport mechanism can be used to concentrate and separate bioparticles. Traditionally, DEP has been performed employing microelectrodes, an approach that is expensive due to the cost of microelectrode fabrication. An alternative is insulator-based DEP (iDEP), an inexpensive method where nonuniform electric fields are created with arrays of insulating structures. This study presents the effects of operating conditions on the dielectrophoretic behavior of polystyrene microparticles under iDEP. Experiments were performed employing microchannels containing insulating structures that worked as insulators. The parameters varied were pH (8-9) and conductivity (25-100 microS/cm) of the bulk medium, and the magnitude of the applied field (200-850 V/cm). Optimal operating conditions in terms of pH and conductivity were obtained, and the microdevice performance was characterized in terms of concentration factor and minimum electric field required (minimum energy consumption). This is the first report on improving iDEP processes when EOF is present. DEP and EOF have been studied extensively, however, this study integrates the effect of suspending medium characteristics on both EK phenomena. These findings will allow improving the performance of iDEP microdevices achieving the highest concentration fold with the lowest energy consumption. 相似文献
29.
A typical double photoconductive layer biochip focusing biological cells and forming specific pearl chains has been studied theoretically in this paper. It was composed of two photoconductive layers coated on the bottom and top of ITO-based glass. A light pattern was used to create face-to-face virtual electrodes and the resulting oscillatory spatial electric field was employed to induce the motion of polarizable neutral particles. In order to estimate the behaviors of the suspended particles, a numerical model including dielectrophoretic forces, dipole–dipole forces and other forces, was implemented by means of the Monte Carlo method. The results indicated that steady-state chains could be formed in a uniform electric field owing to the dipole moment effect. In a non-uniform electric field created by the use of a light pattern, the positive DEP force created a more focused pattern of chains. The work concerning the numerical simulation indicated that this chip could form fixed-length particle chains in perpendicular alignment to satisfy the structured assembly of tissues in the histological engineering application. 相似文献
30.
Some of the challenges with detection of ultra-low concentrations of analytes are to achieve sufficient sensitivity of the measurement and to direct the analyte species to the sensor (electrode) surface. This review describes various strategies that are available to address these challenges: method of electrocatalytic amplification, electrochemical measurements performed in combination with electrokinetic preconcentration of analytes, ultra-sensitive analysis utilizing increased surface area and also the manipulation by the magnetic force. 相似文献