首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4092篇
  免费   803篇
  国内免费   453篇
化学   4002篇
晶体学   65篇
力学   70篇
综合类   38篇
数学   75篇
物理学   1098篇
  2024年   16篇
  2023年   84篇
  2022年   328篇
  2021年   297篇
  2020年   306篇
  2019年   234篇
  2018年   198篇
  2017年   256篇
  2016年   326篇
  2015年   303篇
  2014年   350篇
  2013年   390篇
  2012年   361篇
  2011年   331篇
  2010年   216篇
  2009年   261篇
  2008年   187篇
  2007年   151篇
  2006年   132篇
  2005年   116篇
  2004年   88篇
  2003年   55篇
  2002年   60篇
  2001年   33篇
  2000年   41篇
  1999年   17篇
  1998年   17篇
  1997年   25篇
  1996年   23篇
  1995年   15篇
  1994年   14篇
  1993年   17篇
  1992年   10篇
  1991年   14篇
  1990年   9篇
  1989年   6篇
  1988年   7篇
  1987年   7篇
  1986年   7篇
  1985年   5篇
  1984年   9篇
  1983年   4篇
  1982年   16篇
  1981年   2篇
  1980年   1篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
排序方式: 共有5348条查询结果,搜索用时 15 毫秒
131.
黄飞 《高分子科学》2017,35(2):269-281
We present a microwave-assisted one-pot polymerization with three-components of alkynes, aldehydes and amines for the synthesis of new amino-functionalized optoelectronic polymers. The polymerization of diynes(1a-1c), dialdehydes(2a and 2b) and dibenzylamine catalyzed by InCl_3 was carried out smoothly within 1h under microwave radiation, yielding four soluble polymers with high molecular weights. The resulting polymers P1 and P2 could be easily dissolved in alcohol and thus utilized as the cathode interlayer for polymer solar cells(PSCs). Compared with the control device, the PSCs with P1 and P2 as the cathode interlayer and PTB7-Th:PC_(71)BM as the photoactive layer exhibited significantly higher power conversion efficiencies(PCEs) of 9.49% and 9.16%, respectively. These results suggest that this polycoupling reaction is an efficient approach to construct three-component polymers for the practical applications.  相似文献   
132.
To explore anti-tumor activities of manganese complexes, two complexes have been synthesized and characterized. Complex 1 is bridged by 1,10-phenanthroline and 2,4-biphenyl dicarboxylate. The two complexes have strong fluorescent emission and interact with DNA in an intercalative mode. The complexes also exhibit significant cytotoxic specificity and cancer cell inhibition.  相似文献   
133.
Water transport is critical to the successful implementation of polymer electrolyte fuel cells (PEFC), especially in long-term and dynamic operation in automotives. Liquid water appears in the fuel cells not only from the water generated at the cathode catalyst layer but also as a result of condensation of water vapor from the humidified gases. In this study, we report a simple approach to prepare a superhydrophobic gas diffusion layer by chemical vapor deposition of polydimethylsiloxane without significant change in pore size of gas diffusion layer unlike other approach adding hydrophobic agent such as polytetrafluoroethylene. A superhydrophobic coating on the GDL can be obtained, leading to exceptionally enhanced power performance and stability of PEFC especially at a high current where water transport becomes more critical.  相似文献   
134.
The strategy of sequentially spin-coating a perovskite film from the perovskite precursor and an electron transporting layer of [6,6]-phenyl-C_(71)-butyric acid methyl ester(PC_(71)BM) is developed to simplify the fabrication procedure of perovskite solar cells. X-ray diffraction and scanning electron microscopy indicate that PC_(71)BM film on perovskite layer can retard the evaporation of dimethyl sulfoxide(DMSO) efficiently, thus prolonging the transformation of intermediate phase to perovskite crystals, leading to a high quality perovskite thin film. The solar cells with the structure of indium tin oxides(ITO)/poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)(PEDOT:PSS)/CH_3NH_3PbI_3/PC_(71)BM/bathocuproine(BCP)/Ag made from this simplified method exhibit a higher efficiency(12.68%) than those from the conventional one-step method(9.49%).  相似文献   
135.
136.
This paper describes the development of a lattice Boltzmann (LB) model for a binary gas mixture, and applications to channel flow driven by a density gradient with diffusion slip occurring at the wall. LB methods for single component gases typically use a non‐physical equation of state in which the relationship between pressure and density varies according to the scaling used. This is fundamentally unsuitable for extension to multi‐component systems containing gases of differing molecular masses. Substantial variations in the species densities and pressures may exist even at low Mach numbers; hence, the usual linearized equation of state for small fluctuations is unsuitable. Also, existing methods for implementing boundary conditions do not extend easily to novel boundary conditions, such as diffusion slip. The new model developed for multi‐component gases avoids the pitfalls of some other LB models. A single computational grid is shared by all the species, and the diffusivity is independent of the viscosity. The Navier–Stokes equation for the mixture and the Stefan–Maxwell diffusion equation are both recovered by the model. Diffusion slip, the non‐zero velocity of a gas mixture at a wall parallel to a concentration gradient, is successfully modelled and validated against a simple one‐dimensional model for channel flow. To increase the accuracy of the scheme, a second‐order numerical implementation is needed. This may be achieved using a variable transformation method that does not increase the computational time. Simulations were carried out on hydrogen and water diffusion through a narrow channel for varying total pressure and concentration gradients. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
137.
A n‐type conjugated polymer containing naphthalene diimide (NDI) and 1,3,4‐thiadiazole (TZ) moieties, named PNTZ, has been synthesized and applied for all‐polymer solar cells (all‐PSCs). By the incorporation of TZ unit into the polymer main chains, the lowest unoccupied molecular orbital level of this polymer has been adjusted effectively. In addition, the electron‐acceptor PNTZ shows a broad absorption spectrum in the range of 300–700 nm, and possesses complementary absorption spectrum with the electron‐donor PTB7‐Th. On the basis of PNTZ as the acceptor and PTB7‐Th as the donor, the all‐PSCs are fabricated. After optimization, the well blend morphologies with a continuous D/A interpenetrating network are observed and the best all‐PSC device exhibits a power conversion efficiency of 4.35% with a high short‐circuit current density of 13.26 mA cm?2. This research demonstrates that the TZ‐containing polymer PNTZ is a promising non‐fullerene acceptor for high efficiency all‐PSCs. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55 , 990–996  相似文献   
138.
卤化钙钛矿由于具有低成本、高效率等特点,最近作为非常有前景的太阳能电池吸收层材料被广泛研究。卤化钙钛矿型太阳能电池效率在短短的几年间由3.8%(2009年)迅速增加到22.1%(2016年)。卤化钙钛矿型太阳能电池的出现彻底改变了太阳能电池领域,不仅因为它们快速增长的效率,而且因为它们在材料生长和结构方面的可控性。卤化钙钛矿型太阳能电池的优越性能说明卤化钙钛矿材料具有独特的物理性质。在本综述中,我们总结了卤化钙钛矿材料最近几年在结构、电学、光学方面的理论研究成果,这些都与它们在太阳能电池方面的应用密切相关。我们也将探讨一些卤化钙钛矿型太阳能电池目前遇到的挑战以及可能的理论解决途径。  相似文献   
139.
Non‐viral gene delivery vectors have emerged as potential alternatives in the field of gene therapy by replacing the biological viral vectors. DNA–cationic polymer complexes are one of the most promising systems to target many inborn or acquired diseases without the utilization of conventional drugs. Despite the excellent binding efficiency of cationic polymers, the gene transfection seems limited to date. In this work, a series of ammonium‐based block‐copolymers with different alkyl side chains (ethyl, butyl, and hexyl) and functionality (alcohol, amine, and alkyl) have been prepared to evaluate their capacity to deliver genetic material. First, different ionic liquid monomers with different pendent functional groups were prepared and characterized. Then, polyplexes elaborated with different polymers at several polymer DNA ratios (w/w) were characterized in terms of size, zeta potential, and DNA binding, release, and protection capacity. Finally, the transfection efficiency and cell viability was evaluated in ARPE19 cells. We found that only the systems containing the amine pendent group were able to transfect ARPE19 cell and, that this amine containing polymer was less cytotoxic even at high polymer/DNA ratios (30:1). In conclusion, our studies suggested that the proper selection of the pendent group substantially impacts overall transfection efficiency of cationic polymers. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 280–287  相似文献   
140.
《化学:亚洲杂志》2017,12(5):486-496
Aqueous dye‐sensitized solar cells (DSSCs) are attractive due to their sustainability, the use of water as a safe solvent for the redox mediators, and their possible applications in photoelectrochemical water splitting. However, the higher tendency of dye leaching by water and the lower wettability of dye molecules are two major obstacles that need to be tackled for future applications of aqueous DSSCs. Sensitizers designed for aqueous DSSCs are discussed based on their functions, such as modification of the molecular skeleton and the anchoring group for better stability against dye leaching by water, and the incorporation of hydrophilic entities into the dye molecule or the addition of a surfactant to the system to increase the wettability of the dye for more facile dye regeneration. Surface treatment of the photoanode to deter dye leaching or improve the wettability of the dye molecule is also discussed. Redox mediators designed for aqueous DSSCs are also discussed. The review also includes quantum‐dot‐sensitized solar cells, with a focus on improvements in QD loading and suppression of interfacial charge recombination at the photoanode.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号