首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   51篇
  免费   0篇
  国内免费   5篇
化学   46篇
晶体学   1篇
物理学   9篇
  2022年   2篇
  2021年   2篇
  2017年   1篇
  2015年   3篇
  2014年   1篇
  2013年   4篇
  2012年   1篇
  2011年   1篇
  2010年   1篇
  2009年   3篇
  2008年   7篇
  2007年   14篇
  2006年   2篇
  2005年   5篇
  2004年   1篇
  2002年   2篇
  1999年   2篇
  1998年   1篇
  1994年   1篇
  1993年   1篇
  1991年   1篇
排序方式: 共有56条查询结果,搜索用时 250 毫秒
41.
采用扫描电子显微镜(SEM)和原子力显微镜(AFM)研究了经不同浓度草酸钾(K2C2O4)处理后二棕榈酰磷酯酰胆碱(DPPC)的缺陷LB膜及其对一水草酸钙(COM)成核和生长的影响. K2C2O4的处理可进一步破坏LB膜中圆形畴区内的分子列阵, 尤其是使处在液态扩张相(LE)/液态凝集相(LC)边界的分子列阵无序程度增加, 从而促进了COM晶体在此处的成核和生长, 最终诱导圆形堆积的COM晶体图形出现. 随着损伤LB膜的K2C2O4浓度c(K2C2O4)从0.3 mmol/L增加到5.0 mmol/L, 其对LB膜畴区有序结构的破坏作用逐渐增强, 圈状堆积的晶体图形数量增多. 当c(K2C2O4)为0.3 mmol/L时, 主要诱导实心的圆形堆积的COM晶体图形, 而当c(K2C2O4)增加至5.0 mmol/L时, 生成圈状COM晶体图形, 且图形的半径减小. 这一研究结果将有助于从分子和超分子水平上了解肾小管上皮细胞膜损伤后的微结构变化及其与肾结石形成的关系.  相似文献   
42.
肾结石形成与肾上皮细胞膜损伤密切相关, 但细胞膜损伤后的微结构及其与肾结石微晶粘附的分子机制仍不清楚. 本文采用经草酸钾处理后存在缺陷的二棕榈酰磷酯酰胆碱(DPPC)的LB膜为模型, 采用原子力显微镜(AFM)、荧光显微镜和扫描电子显微镜(SEM)研究了模型膜的缺陷畴区及其对一水草酸钙(COM)晶体生长的促进作用. LB膜内圆形的缺陷畴区可以诱导圆形COM晶体图形生成, 圆形晶体图形的直径从3 mm到150 mm不等. 在圆形区域内, 单个COM晶体的尺寸大都在1~3 μm, 以针状、四边形或不规则的形状存在; 而在同等条件下正常LB膜诱导的COM晶体没有圆形聚集现象, 单个COM晶体在LE/LC相边界生长, 其尺寸显著增加至5~10 mm. 不同性质LB膜促进COM成核和生长的强弱依次为: 经草酸钾处理的LB膜缺陷畴区>>正常LB膜的LC/LE边界>正常LB膜非边界区域>>无膜诱导. 从缺陷LB膜的活性位点及其对COM晶体成核的促进作用等方面讨论了上述实验结果.  相似文献   
43.
Multibilayer structures of hydrated phospholipids, often considered as model biological membranes, are, from the physical viewpoint, lyotropic liquid crystalline systems undergoing temperature-induced mesomorphic phase transitions. Effects of silver nitrate and urocanic acid on lyotropic phase states of hydrated L-α-dipalmitoylphosphatidylcholine (DPPC) have been studied by small-angle X-ray scattering and differential scanning calorimetry (DSC). Both methods show increase of the main phase-transition temperature (Tm) of hydrated DPPC upon introduction of AgNO3 or urocanic acid, decrease of pre-transition temperature (Tp) in the presence of urocanic acid and its increase in the presence of AgNO3. Thus, urocanic acid widened the ripple-phase temperature region. Silver nitrate caused the appearance of an additional high-temperature peak on DSC thermograms, evidencing phase separation in the system. Both agents caused minor effects on DPPC lipid bilayer repeat distance (D) in gel phase, but resulted in noticeable increase of D in the liquid crystal phase with temperature as compared to undoped DPPC structures.  相似文献   
44.
The effect of 2,4-dichlorophenol (DCP) on the main transition and pretransition of fully hydrated (20 mass%) dipalmitoylphosphatidylcholine (DPPC) multilamellar liposomes has been studied by differential scanning calorimetry (DSC). It was observed that an increase in the molar ratio of DCP/DPPC (from 4·10-5 up to 2·10-2) causes progressive reductions in the temperature and enthalpy of the pretransition. The higher concentration of DCP eliminates the pretransition. The influence of DCP on the main transition in this molar ratio range is not drastic, but a decrease in temperature and in the enthalpy values was observed. In the molar ratio range (from 2·10-1 up to 4·10-1) the DSC scans show multiple main transition peaks instead of the characteristic single peak of the main transition. Above a DCP/DPPC molar ratio of 0.6 a new peak appears at 25°C having about the same transition enthalpy as the main transition of the pure system.This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   
45.
Amphiphile bilayer films are obtained from 1,2 dipalmitoyl-glycero-3-phosphocholine (DPPC): bilayer lipid membranes (BLM) and Newton black films (NBF), through thinning of the respective thin liquid films, thus allowing for a very precise determination of the moment of their formation. Stability (or rupture) and formation of BLM and NBF are considered from a unified point of view with the microscopic theory of Kashchiev–Exerowa [J. Colloid Interface Sci., 77 (1980) 501–511], based on the formation of nanoscopic holes in them. BLM and NBF are obtained and studied with the microinterferometric method of Scheludko–Exerowa in its contemporary version. The equivalent thickness of both BLM (in benzene solution between two water phases with 0.1 M NaCl) and NBF in aqueous DPPC solution (in the presence of 0.1 M NaCl) is determined as being hw = 7.0 nm for BLM and hw = 7.8 nm for NBF. By means of the dependences: BLM lifetime versus DPPC concentration and probability for BLM formation versus DPPC concentration, it is established that there exist metastable BLM and stable NBF. The good fit between the experimental results of τ(C) dependence and theory in the case of BLM allow to determine the three constants: pre-exponential factor A = 1.5 × 10−3 s, related to the process kinetics; constant B = 20.2 ± 0.2, related to the specific hole energy γ = 1.7 × 10−11 J/m and the equilibrium concentration Ce = 6 × 10−4 ± 7.2 × 10−6 m/l. The specific hole linear energy γ = 1.7 × 10−11 J/m determined as well as the binding energy Q between first neighbor molecules in the bilayers Q = 1.48 × 10−19 J (36 kT) are lower than the ones determined for DPPC foam bilayer in gel state γ = 9.1 × 10−11 J/m and Q = 55 kT. This means that interaction is weaker in the case of BLM. The critical concentration Cc at which bilayer formation starts is: for BLM Cc = 30 μg/ml and for NBF Cc = 70 μg/ml. This concentration characterizes quantitatively the formation of the amphiphile bilayer and is a very useful parameter that can be used for various purposes.  相似文献   
46.
The influence of the preservative, propyl paraben (PPB) on the biophysical properties of dipalmitoyl phosphatidyl choline (DPPC) vesicles, both in multilamellar vesicle (MLV) and unilamellar vesicle (ULV) forms, has been studied using DSC and (1H and 31P) NMR. The mechanism by which PPB interacts with DPPC bilayers was found to be independent of the morphological organization of the lipid bilayer. Incorporation of PPB in DPPC vesicles causes a significant depression in the transition temperature and enthalpy of both the pre-transition (PT) and the gel to liquid crystalline transition. The presence of the PPB also reduces the co-operativity of these transitions. However, at high PPB concentration the PT disappears. DSC and NMR findings indicate that: (i) PPB is bound strongly to the lipid bilayer leading to increased headgroup fluidity due to reduced headgroup–headgroup interaction and (ii) the PPB molecules are intercalated between the DPPC polar headgroups with its alkyl chain penetrate into the co-operative region. MLV incorporated with high PPB concentration shows additional transitions whose intensity increases with increasing PPB concentration. This phase segregation observed could probably be due to co-existence of PPB-rich and PPB-poor phospholipid domains within the bilayers. The effect of inclusion of cholesterol in the PPB-free and PPB-doped DPPC dispersion was also studied. Equilibration studies suggest that PPB molecules are very strongly bound and remain intercalated between the polar headgroup for prolonged time.  相似文献   
47.
Membrane interactions of liposomes of ternary phospholipid/cholesterol bilayers are investigated. These interactions lead to discoidal deformations and regular aggregations and are strongly enhanced by the presence of mistletoe lectin (ML), a RIP II type protein. The encapsulation of ML into liposomal nanocapsules is studied with a systematic variation of the lipid composition to monitor its effect on the physical properties: entrapment, mean size, morphology, and stability. Extrusion of multilamellar vesicles through filters 80 nm pore size was used for the generation of liposomes. The mean sizes of liposomes ranged between 120 and 200 nm in diameter with narrow size distributions. The increase in flow rate with pressure for three dioleoylphosphatidylcholine (DOPC)/cholesterol (Chol)/dipalmitoylphosphatidylcholine (DPPC) lipid mixtures was linear and allowed to extrapolate to the minimum burst pressure of the liposomal bilayers. From the minimum pressures P(min), the bilayer lysis tensions gamma(l) were determined. The increase in P(min) and gamma(l) with an increasing content of a saturated phosopholipid (DPPC) indicates that DPPC increases the mechanical strength of lipid bilayers. Apparently, DPPC, like cholesterol, leads to a less compressible surface and a more cohesive membrane. After preparation, vesicle solutions were purified by gel permeation chromatography to separate encapsulated ML from free ML in the extravesicular solution. Purified liposomes were then characterized. The content of entrapped and adsorbed ML was measured using ELISA. Repetitive freezing/thawing cycles prior to extrusion significantly increased ML uptake. On the contrary, adsorption was not affected neither by lipid composition, nor concentration and preparation. Differences in experimental encapsulation efficiency only reflect the differences in the mean vesicle sizes of the different samples as is revealed by a comparison to a theoretical estimate. Cryo-transmission electron microscopy (Cryo-TEM) images show that beside spherical, single-walled liposomes, there is a considerable fraction of discoidally deformed vesicles. Based on our results and those found in the literature, we speculate that the flattening of the vesicles is a consequence of lipid phase separation and the formation of condensed complexes and areas of different bending elasticities. This phenomenon eventually leads to agglomeration of deformed liposomal structures, becoming more pronounced with the increase in the relative amount of saturated fatty acids, presumably caused by hydrophobic interaction. For the same lipid mixture aggregation correlated linearly with the ML content. Finally, tested liposomal samples were kept at 4 degrees C to examine their stability. Only slight fluctuations in diameter and the increase in polydispersity after 3 weeks of storage occurred, with no statistically significant evidence of drug leakage during a time period of 12 days, illustrating physical stability of liposomes.  相似文献   
48.
This paper reports on the physical stability of DPPC-(dipalmitoyl phosphatidyl choline) liposomes in various aqueous dispersions and its control by uncharged polymers. The effect of natural (-, β-, γ-) cyclodextrins (CDs) on the stability of bare and polymer-bearing liposomes and also, the attachment of the CD molecules and the macromolecules, respectively, to the DPPC-bilayers of small unilamellar vesicles (SUV) were studied.

It was found that above a CD/DPPC ratio, each cyclodextrin caused a definite destruction in the phospholipid bilayers. The extent of membrane destabilization due to a cyclodextrin closely related to the amount of the CD molecules bound to the DPPC-bilayers.

The polymer-coated liposomes formulated by incorporating a dissolved homopolymer or copolymer into the phospholipid bilayer of the vesicles exhibited higher physical stability. Uncharged polymers effectively hindered the disintegration of the liposomal membranes brought about by the CD molecules. The polymer layers formed around the phospholipid bilayers ensured an enhanced steric stabilization for the DPPC-liposomes. Methylcellulose (MC) with high molecular mass and a polyvinyl alcohol-co-vinyl propional copolymer alike exhibited efficient stabilizing effect.  相似文献   

49.
Wenying Gao 《Acta Physico》2008,24(7):1149-1154
The effect of cholesterol, desmosterol, stigmasterol, sitosterol, ergosterol, and androsterol on the phase behavior of aqueous dispersions of dipalmitoylphosphatidylcholine (DPPC) was studied to understand the role of the side chain in the formation of ordered phases of the type observed in membrane rafts. Thermotropic changes in the structure of mixed dispersions and transition enthalpies were examined by synchrotron X-ray diffraction (XRD) and differential scanning calorimetry (DSC). The observations indicated that cholesterol was more efficient than phytosterols (stigmasterol and sitosterol) or ergosterol in its interaction with DPPC to form the liquid ordered phase (Lo). The Lo induced by cholesterol or desmosterol was stable over a wide temperature range, whereas, the liquid ordered phase containing phytosterols or ergosterol was profoundly dependent on temperature, which should be distinguished as Loβ and Loα, representing the phases below and above the main transition temperature. The characteristics in forming ordered structures of cholesterol and other sterols imply that the evolution may have selected cholesterol as the most efficient sterol for animals to form rafts in their cell membranes.  相似文献   
50.
Stability and wetting properties changes of systems formed of phospholipid DPPC (1,2-dipalmitoyl-sn-glycero-3-phosphocholine) layers covering silica particles or glass slides due to the phospholipase A2 (PLA2) action were determined by zeta potential measurements and the surface free energy evaluation, respectively. The comparison of the zeta potential and surface free energy, which was evaluated from advancing and receding contact angles via applying models of interfacial interactions, i.e. van Oss et al. (LWAB) and contact angle hysteresis (CAH), was found to be helpful for better understanding the mechanism of PLA2 action on the lipid layers, what is discussed in the paper.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号