首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6646篇
  免费   744篇
  国内免费   804篇
化学   7254篇
晶体学   20篇
力学   34篇
综合类   78篇
数学   59篇
物理学   749篇
  2024年   7篇
  2023年   94篇
  2022年   127篇
  2021年   229篇
  2020年   283篇
  2019年   264篇
  2018年   189篇
  2017年   219篇
  2016年   292篇
  2015年   317篇
  2014年   349篇
  2013年   454篇
  2012年   624篇
  2011年   451篇
  2010年   439篇
  2009年   465篇
  2008年   491篇
  2007年   519篇
  2006年   490篇
  2005年   438篇
  2004年   314篇
  2003年   267篇
  2002年   189篇
  2001年   135篇
  2000年   98篇
  1999年   111篇
  1998年   62篇
  1997年   67篇
  1996年   41篇
  1995年   51篇
  1994年   27篇
  1993年   18篇
  1992年   16篇
  1991年   11篇
  1990年   10篇
  1989年   7篇
  1988年   3篇
  1987年   2篇
  1986年   4篇
  1985年   3篇
  1984年   3篇
  1983年   3篇
  1981年   1篇
  1980年   2篇
  1979年   1篇
  1978年   2篇
  1973年   2篇
  1969年   3篇
排序方式: 共有8194条查询结果,搜索用时 31 毫秒
71.
Conformational stability of G-quartets found in telomeric DNA quadruplex structures requires the coordination of monovalent ions. Here, an extensive Hartree-Fock and density functional theory analysis of the energetically favored position of Li+, Na+, and K+ ions is presented. The calculations show that at quartet-quartet distances observed in DNA quadruplex structures (3.3 A), the Li+ and Na+ ions favor positions of 0.55 and 0.95 A outside the plane of the G-quartet, respectively. The larger K+ ion prefers a central position between successive G-quartets. The energy barrier separating the minima in the quartet-ion-quartet model are much smaller for the Li+ and Na+ ions compared with the K+ ion; this suggests that K+ ions will not move as freely through the central channel of the DNA quadruplex. Spin-spin coupling constants and isotropic chemical shifts in G-quartets extracted from crystal structures of K+- and Na+-coordinated DNA quadruplexes were calculated with B3LYP/6-311G(d). The results show that the sizes of the trans-hydrogen-bond couplings are influenced primarily by the hydrogen bond geometry and only slightly by the presence of the ion. The calculations show that the R(N2N7) distance of the N2-H2...N7 hydrogen bond is characterized by strong correlations to both the chemical shifts of the donor group atoms and the (h2)J(N2N7) couplings. In contrast, weaker correlations between the (h3)J(N1C6') couplings and single geometric factors related to the N1-H1...O6=C6 hydrogen bond are observed. As such, deriving geometric information on the hydrogen bond through the use of trans-hydrogen-bond couplings and chemical shifts is more complex for the N1-H1...O6=C6 hydrogen bond than for the N2-H2...N7 moiety. The computed trans-hydrogen-bond couplings are shown to correlate with the experimentally determined couplings. However, the experimental values do not show such strong geometric dependencies.  相似文献   
72.
A new series of photoactivated DNA oxidizing agents in which an acridine moiety is covalently linked to viologen by an alkylidene spacer was synthesized, and their photophysical properties and interactions with DNA, including DNA cleaving properties, were investigated. The fluorescence quantum yields of the viologen-linked acridines were found to be lower than that of the model compound 9-methylacridine (MA). The changes in free energy for the electron transfer reactions were found to be favorable, and the fluorescence quenching observed in these systems is explained by an electron transfer mechanism. Intramolecular electron transfer rate constants were calculated from the observed fluorescence quantum yields and singlet lifetime of MA and are in the range from 1.06x10(10) s(-1) for 1 a (n=1) to 6x10(8) s(-1) for 1 c (n=11), that is, the rate decreases with increasing spacer length. Nanosecond laser flash photolysis of these systems in aqueous solutions showed no transient absorption, but in the presence of guanosine or calf thymus DNA, transient absorption due to the reduced viologen radical cation was observed. Studies on DNA binding demonstrated that the viologen-linked acridines bind effectively to DNA in both intercalative and electrostatic modes. Results of PM2 DNA cleavage studies indicate that, on photoexcitation, these molecules induce DNA damage that is sensitive to formamidopyrimidine DNA glycosylase. These viologen-linked acridines are quite stable in aqueous solutions and oxidize DNA efficiently and hence can be useful as photoactivated DNA-cleaving agents which function purely by the co-sensitization mechanism.  相似文献   
73.
Platinum nanoclusters were deposited along the supercoiled DNA strands after incubation of cis-(trans-1R,2R-diaminocyclohexane)(dl-camphorato)platinum(Ⅱ) (Cdp), an analogue of the anti-tumor drug-carboplatin, with DNA and K2PtCl4 for 600 min and then through reduction of dimethylaminoborane (DMAB). The decrease of absorption of DNA at 260 nm indicates the coordination of Cdp and DNA. TEM and AFM were employed to characterize the morphologies and structures of platinum nanoclusters.  相似文献   
74.
《印度化学会志》2021,98(10):100156
Corona virus disease 2019 (COVID-19) endemic has havoc on the world; the causative virus of the pandemic is SARS CoV-2. Pharmaceutical companies and academic institutes are in continuous efforts to identify anti-viral therapy or vaccines, but the most significant challenge faced is the highly evolving genome of SARS CoV-2, which is imparting evolutionary selective benefits to the virus. To understand the viral mutations, we have retrieved nine hundred and thirty-four samples from different states of India via the GISAID database and analyzed the frequency of all types of point mutation in all structural, non-structural proteins, and accessory factors of SARS CoV-2. Spike glycol protein, nsp3, nsp6, nsp12, N and NS3 were the most evolving proteins. High frequency point mutations were Q496P (nsp2), A380V (nsp4), A994D (nsp3), L37F (nsp6), P323L & A97V (nsp12), Q57H (ns3), D614G (S), P13L (N), R203K (N), G204R (N) and S194L (N).  相似文献   
75.
The reaction of styrene oxide, a potential carcinogen in humans, with DNA constituents has been used to develop an improved method for quantification of DNA adducts. To enable monitoring of DNA adducts caused by xenobiotics at physiological relevant levels, a robust, reliable and powerful method based on monitoring of phosphorus in nucleotides is described. An efficient enzymatic digestion step and a sample-preconcentration procedure are essential, and enable separation of alkylated nucleotides from the large excess of native nucleotides. The adducts are detected by means of the phosphorus signal measured at mass m/z=31 with an inductively-coupled-plasma mass spectrometer. Bis(4-nitrophenyl)phosphate (BNPP) serves as internal standard for quantification of the adducts. The absolute limit of detection, 45 fmol, corresponds to detection of three modified nucleotides among 107 native nucleotides (the calculation is based on use of 50 g calf thymus DNA). An adduct formation ratio at the DNA of 3.6 adducts per 1000 nucleotides was measured, which is 75% lower than for reaction with monomeric 2-deoxy-nucleotides. In addition, a substantial amount of phosphate adducts were detected, but in DNA the rate of phosphate formation was lower than with monomeric nucleotides. Most probably these adducts escaped unnoticed when 31P-post-labelling was employed.  相似文献   
76.
5-(Pyren-1-yl)-2'-deoxyuridine (PydU) and 5-(Pyren-1-yl)-2'-deoxycytidine (PydC) were used as model nucleosides for DNA-mediated reductive electron transport (ET) in steady-state fluorescence and femtosecond time-resolved transient absorption spectroscopy studies. Excitation of the pyrene moiety in PydU and PydC leads to an intramolecular electron transfer that yields the pyrenyl radical cation and the corresponding pyrimidine radical anion (dU.- and dC.-. By comparing the excited state dynamics of PydC and PydU, we derived information about the energy difference between the two pyrimidine radical anion states. To determine the influence of protonation on the rates of photoinduced intramolecular ET, the spectroscopic investigations were performed in acetonitrile, MeCN, and in water at different pH values. The results show a significant difference in the basicity of the generated pyrimidine radical anions and imply an involvement of proton transfer during electron hopping in DNA. Our studies revealed that the radical anion dC.- is being protonated even in basic aqueous solution on a picosecond time scale (or faster). These results suggest that protonation of dC.- may also occur in DNA. In contrast, efficient ET in PydU could only be observed at low pH values (< 5). In conclusion, we propose--based on the free energy differences and the different basicities--that only dT.- but not dC.- can participate as an intermediate charge carrier for excess electron migration in DNA.  相似文献   
77.
A convenient preparation of the parent tetrahydrobenzodifuran 2 was developed from resorcinol. The oxidation of one or both furan rings of this key intermediate was accomplished with DDQ and the resulting benzodifuran was subsequently reacted with 3,6-dimethoxycarbonyl-1,2,4,5-tetrazine to afford the expected pyridazino-psoralen derivative in good yield. This simple method allowed the efficient preparation of a pyridazino-psoralen derivative with a formyl group at C-7, which was introduced by directed ortho-lithiation in the intermediate 2. An aminoalkyl side-chain was also introduced to the tetracyclic skeleton through the aldehyde functionality in a reductive amination process, which was accompanied by an unprecedented reduction of the pyridazine ring.  相似文献   
78.
通过研究罗丹明B与单双链DNA作用过程中,胶体金加入前后的紫外可见吸收光谱的变化,发现在胶体金加入的前后,罗丹明B均以沟槽方式与单双链DNA相作用;胶体金的加入可以较大程度地增大化合物与DNA之间的相互作用.  相似文献   
79.
《Electroanalysis》2004,16(3):224-230
The 3′‐azido‐3′‐deoxythymidine (AZT, Zidovudine) is an antiproliferative and virostatic drug widely used in human immunodeficiency virus type 1 (HIV‐1) infection treatment. With respect to side effects of high doses and a short half‐life of AZT, a fast and simple detection method for this agent could be helpful. The aim of our study was to determine AZT levels in natural samples (urine, serum, whole blood, and cell cultures, such as the HaCaT line of keratinocytes) without their mineralization and/or purification, by means of electrochemical methods using hanging mercury drop electrode (HMDE). On this electrode, AZT undergoes irreversible reduction at the peak potential near Ep?1.1 V (vs. Ag/AgCl/3 M KCl). Reduction AZT signals were measured by cyclic voltammetry (CV), differential pulse voltammetry (DPV), square‐wave voltammetry (SWV), and constant current chronopotentiometric stripping analysis (CPSA). In phosphate buffer (pH 8) the SWV yielded the best AZT signal with the detection limit of 1 nM. The determination of AZT concentration in biological materials is affected by electroactive components, such as proteins and DNA. For monitoring the influence of these compounds, AZT reduction was performed in the presence of 10 μg/mL calf thymus ssDNA and/or 100 μg/mL bovine serum albumin. In these cases, the detection limit increased to 0.25 μM. Also studied was the AZT concentration in keratinocyte cells (HaCaT line) during cell cultivation. It has been shown that the SWV may be considered as a useful tool for the determination of AZT concentration in cell cultures, and for monitoring AZT pharmacokinetics.  相似文献   
80.
Sieben VJ  Backhouse CJ 《Electrophoresis》2005,26(24):4729-4742
When performing genetic analysis on microfluidic systems, labeling the sample DNA for detection is a critical preparation step. Labeling procedures often involve fluorescently tagged primers and PCRs, which lengthen experimental run times and introduce higher levels of complexity, increasing the overall cost per analysis. Alternatively, on-chip labeling techniques based on intercalating dyes permit rapid labeling of DNA fragments. However, as noted in the literature, the stochastic nature of dye-DNA complex formation hinders the native electrophoretic migration of DNA fragments, degrading the separation resolution. In this study, we present a novel method of controllably labeling DNA fragments at the end of the electrophoretic separation channel in a glass microfluidic chip. Permitting the DNA to separate and labeling just before detection, achieves the rapid labeling associated with intercalators while maintaining the high resolution of native DNA separations. Our analyses are completed in minutes, rather than the hours typical of sample prelabeling. We demonstrate an electrophoretic microchip-based intercalator labeling technique that achieves higher resolution performance than reported in the literature to date.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号