首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6797篇
  免费   665篇
  国内免费   809篇
化学   7316篇
晶体学   20篇
力学   35篇
综合类   78篇
数学   59篇
物理学   763篇
  2024年   13篇
  2023年   100篇
  2022年   184篇
  2021年   229篇
  2020年   284篇
  2019年   264篇
  2018年   189篇
  2017年   219篇
  2016年   292篇
  2015年   318篇
  2014年   349篇
  2013年   455篇
  2012年   624篇
  2011年   451篇
  2010年   441篇
  2009年   465篇
  2008年   492篇
  2007年   520篇
  2006年   490篇
  2005年   439篇
  2004年   314篇
  2003年   267篇
  2002年   189篇
  2001年   135篇
  2000年   98篇
  1999年   111篇
  1998年   62篇
  1997年   67篇
  1996年   41篇
  1995年   51篇
  1994年   27篇
  1993年   18篇
  1992年   16篇
  1991年   11篇
  1990年   10篇
  1989年   7篇
  1988年   3篇
  1987年   2篇
  1986年   4篇
  1985年   3篇
  1984年   3篇
  1983年   3篇
  1981年   1篇
  1980年   2篇
  1979年   1篇
  1978年   2篇
  1973年   2篇
  1969年   3篇
排序方式: 共有8271条查询结果,搜索用时 0 毫秒
141.
DNA是携带遗传信息和基因表达的基本物质.因为复杂的生物环境以及外源因素的影响,DNA存在灵活多变的结构,而不同的构型都有其独特的意义和重要的生物学功能,相关研究受到越来越广泛的关注.本文主要针对近年来钌多吡啶化合物与DNA相互作用研究的最新进展做一综述,包括DNA结构的识别,DNA二级、三级结构的调控,DNA光交联以及作为非病毒基因载体,细胞成像以及抗肿瘤等方面的应用.  相似文献   
142.
Conjugation of a hydrophobic poly(2‐oxazoline) bearing tertiary amide groups along its backbone with a short single stranded nucleotide sequence results in an amphiphilic comb/graft copolymer, which organizes in fibrils upon direct dissolution in water. Supported by circular dichroism, atomic force microscopy, transmission electron microscopy, and scattering data, fibrils are formed through inter‐ and intramolecular hydrogen bonding between hydrogen accepting amide groups along the polymer backbone and hydrogen donating nucleic acid grafts leading to the formation of hollow tubes.

  相似文献   

143.
《印度化学会志》2022,99(12):100799
A charge transfer hydrogen bonded complex was prepared and experimentally explored in an acetonitrile (ACN) medium between the proton acceptor (electron donor) 2, 3-Diamino-5-bromopyridine and the proton donor (electron acceptor) chloranilic acid. The stoichiometry of the charge transfer complex is 1:1. The Benesi-Hildebrand equation is used to calculate the molar absorptivity (εCT), association constant (KCT) and other spectroscopic physical characteristics. The solid compound was synthesized and studied using several spectroscopic methods. The presence of charge and proton transfers in the resultant complex was supported by 1H NMR, FT-IR and SEM-EDX investigations. The complex DNA binding ability was investigated using electron absorption spectroscopy, and the CT complex binding mechanism is intercalative. The intrinsic binding constant (Kb) value is 5.2 × 106M?1. The good binding affinity of the CT complex makes it potentially suitable for usage as a pharmaceutical in the future. Molecular docking calculations have been performed between CT complex and DNA (ID = 1BNA) to study the CT-DNA interaction theoretically. To corroborate the experimental findings, calculations based on DFT were carried out in the gas and PCM analysis where the existence of charge and hydrogen transfers. Finally, good agreement between experimental and theoretical computations was observed confirming that the basis set used is appropriate for the system under examination.  相似文献   
144.
Fan  Xuemei  Liu  Yandan  Fan  Xinhui  Nan  Yue  Su  Lingling  Wang  Shumin  Wang  Yimeng  Wang  Xiangting 《分析试验室》2022,(9):1029-1033
N and S co-doped graphene quantum dotsNS-GQDswith excellent fluorescence properties were synthesized by hydrothermal method using citrate and thiourea as ingredientsand were characterized. The fluorescence signal was notably reduced in the presence of single stranded DNAssDNAsince ssDNA can adsorb on the surface of NS-GQDs through p-p stacking interaction. Whereas a significantly restored fluorescence signal was observed in the presence of bleomycinowing to the irreversible cleavage of ssDNA by bleomycin with Fe2+ as cofactor. Thusa fluorescence sensor for bleomycin detection was developed. The linear range was from 1.8 to 1200 nmol/L and the detection limit was 0.25 nmol/L. The method was used to detect bleomycin content in human serum samples with satisfactory results. © 2022, Youke Publishing Co.,Ltd. All rights reserved.  相似文献   
145.
146.
In this study, ultrasound-assisted extraction of polyphenols from C. cicadae was optimized by response surface methodology (RSM). The optimized conditions were determined as extraction time of 39 min, liquid-to-solid ratio of 1:29 g/mL, extraction temperature of 69 °C and ethanol concentration of 55% with a yield of 21.9 mg gallic acid equivalent/g dry weight. Four resins were used for polyphenol purification. D101 resin had the highest ratio of adsorption and was further applied in polyphenol purification test. A total of 19 different phenolic compounds were identified by LC-MS, including 12 phenolic acids and 7 organic acids. In addition, C. cicadae polyphenols displayed higher antioxidant activity in vitro and anti-aging activity of C. elegans in vivo. Lastly, C. cicadae polyphenols showed the potential to protect DNA from oxidative damage. Overall, our results suggest that polyphenols from C. cicadae may be considered as novel sources of anti-oxidation, anti-aging and recommended as reagents to protect DNA from oxidative damage in food and pharmaceutical industries.  相似文献   
147.
Nucleic acid–based electrochemical sensors are ideally suited to the detection of molecular targets for which enzymatic detection or direct electrochemical oxidation – reduction reactions are not possible. Moreover, the versatility of nucleic acids in their ability to bind a great variety of target types, from small molecules to single-entity mesoscopic targets, makes them attractive receptors for the development of electrochemical biosensors. In this brief opinion piece, we discuss field advances from the past two years. We hope the works highlighted here will inspire the community to pursue creative designs enabling the detection of larger and more complex targets with a specific focus on analytical validation and translation into preclinical or clinical applications.  相似文献   
148.
The integration of constriction structures such as nanopores and nanochannels into fluidic devices discloses powerful biosensing capabilities that can be tuned to a wide range of analytes through conceptually simple size calibrations. The practical implementation of this tuning requires a nontrivial manipulation of matter at nanoscale with further requirements for low complexity and low-cost procedures that may be adapted to industrial production. Here, we review the recent progress on the fabrication techniques of nanopores and nanochannels, together with the efforts to realize their full biosensing potential by understanding and amending the problems still afflicting the measurement performed during operation.  相似文献   
149.
Statins have been widely used for the treatment of hypercholesterolemia due to their ability to inhibit HMG-CoA reductase, the rate-limiting enzyme of de novo cholesterol synthesis, via the so-called mevalonate pathway. However, their inhibitory action also causes depletion of downstream intermediates of the pathway, resulting in the pleiotropic effects of statins, including the beneficial impact in the treatment of cancer. In our study, we compared the effect of all eight existing statins on the expression of genes, the products of which are implicated in cancer inhibition and suggested the molecular mechanisms of their action in epigenetic and posttranslational regulation, and in cell-cycle arrest, death, migration, or invasion of the cancer cells.  相似文献   
150.
The high sequence specificity and precise base complementary pairing principle of DNA provides a rich orthogonal molecular library for molecular programming, making it one of the most promising materials for developing bio-compatible intelligence. In recent years, DNA has been extensively studied and applied in the field of biological computing. Among them, the toehold-mediated strand displacement reaction (SDR) with properties including enzyme free, flexible design and precise control, have been extensively used to construct biological computing circuits. This review provides a systemic overview of SDR design principles and the applications. Strategies for designing DNA-only, enzymes-assisted, other molecules-involved and external stimuli-controlled SDRs are described. The recently realized computing functions and the application of DNA computing in other fields are introduced. Finally, the advantages and challenges of SDR-based computing are discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号