首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   174篇
  免费   17篇
  国内免费   39篇
化学   220篇
物理学   10篇
  2024年   1篇
  2023年   5篇
  2022年   32篇
  2021年   24篇
  2020年   20篇
  2019年   11篇
  2018年   10篇
  2017年   10篇
  2016年   17篇
  2015年   12篇
  2014年   9篇
  2013年   14篇
  2012年   10篇
  2011年   16篇
  2010年   11篇
  2009年   8篇
  2008年   8篇
  2007年   4篇
  2006年   3篇
  2005年   1篇
  2004年   1篇
  2003年   1篇
  1998年   1篇
  1983年   1篇
排序方式: 共有230条查询结果,搜索用时 46 毫秒
101.
《Electroanalysis》2018,30(3):398-401
This communication reports on electrochemical detection of thrombin based on labeling with osmium tetroxide bipyridine [OsO4(bipy)]. Tryptophan amino acids can be labeled at the C−C‐double bond, and at least some tryptophan moieties are accessible for labeling in thrombin. Using the catalytic hydrogen signal from adsorptive stripping voltammetry performed on hanging mercury drop electrode, we could detect as little as 1.47 nM [OsO4(bipy)]‐modified thrombin. We also tested the binding of [OsO4(bipy)]‐modified thrombin with the classic thrombin binding aptamer (TBA) on gold electrodes. This preliminary study revealed that even after modification, a major part of the affinity was conserved, and that the aptamer self‐assembled monolayer (SAM) could be regenerated several times. Molecular simulations confirm that [OsO4(bipy)]‐modified thrombin largely preserves the high binding affinity also of the alternative HD22 aptamer to thrombin, albeit at slightly reduced affinities due to steric hindrance when tryptophans 96 and 237 are labelled. Based on these simulations, compensatory modifications in the aptamer should result in significantly improved binding with labelled thrombin. This combined experimental‐computational approach lays the groundwork for the rational design of improved aptamer sensors for analytical applications.  相似文献   
102.
CD63, a member of transmembrane-4-superfamily of tetraspanin proteins and a highly N-glycosylated type III lysosomal membrane protein, is known to regulate malignancy of various types of cancers such as melanoma and breast cancer and serves as a potential marker for cancer detection. Recently, its important role as a classic exosome marker was also emphasized. In this work, via using a magnetic bead-based competitive SELEX (systematic evolution of ligands by exponential enrichment) procedure and introducing a 0.5 M NaCl as elution buffer, we identified two DNA aptamers (CD63-1 and CD63-2) with high affinity and specificity to CD63 protein (Kd = 38.71 nM and 78.43, respectively). Furthermore, CD63-1 was found to be efficient in binding CD63 positive cells, including breast cancer MDA-MB-231 cells and CD63-overexpressed HEK293T cells, with a medium binding affinity (Kd ~ 100 nM) as assessed by flow cytometry. When immunostaining assay was performed using clinical breast cancer biopsy, the CD63-1 aptamer demonstrated a comparable diagnostic efficacy for CD63 positive breast cancer with commercial antibodies. After developing a magnetic bead-based exosome immunoaffinity separation system using CD63-1 aptamer, it was found that this bead-based system could effectively isolate exosomes from both MDA-MB-231 and HT29 cell culture medium. Importantly, the introduction of the NaCl elution in this work enabled the isolation of native exosomes via a simple 0.5M NaCl incubation step. Based on these results, we firmly believe that the developed aptamers could be useful towards efficient isolation of native state exosomes from clinical samples and various theranostic applications for CD63-positive cancers.  相似文献   
103.
An electrochemiluminescence (ECL) biosensor for simultaneous detection of adenosine and thrombin in one sample based on bifunctional aptamer and N-(aminobutyl)-N-(ethylisoluminol) functionalized gold nanoparticles (ABEI-AuNPs) was developed. A streptavidin coated gold nanoparticles modified electrode was utilized to immobilize biotinylated bifunctional aptamer (ATA), which consisted of adenosine and thrombin aptamer. The ATA performed as recognition element of capture probe. For adenosine detection, ABEI-AuNPs labeled hybridization probe with a partial complementary sequence of ATA reacted with ATA, leading to a strong ECL response of N-(aminobutyl)-N-(ethylisoluminol) enriched on ABEI-AuNPs. After recognition of adenosine, the hybridization probe was displaced by adenosine and ECL signal declined. The decrease of ECL signal was in proportion to the concentration of adenosine over the range of 5.0 × 10−12–5.0 × 10−9 M with a detection limit of 2.2 × 10−12 M. For thrombin detection, thrombin was assembled on ATA modified electrode via aptamer–target recognition, another aptamer of thrombin tagged with ABEI-AuNPs was bounded to another reactive site of thrombin, producing ECL signals. The ECL intensity was linearly with the concentration of thrombin from 5 × 10−14 M to 5 × 10−10 M with a detection limit of 1.2 × 10−14 M. In the ECL biosensor, adenosine and thrombin can be detected when they coexisted in one sample and a multi-analytes assay was established. The sensitivity of the present biosensor is superior to most available aptasensors for adenosine and thrombin. The biosensor also showed good selectivity towards the targets. Being challenged in real plasma sample, the biosensor was confirmed to be a good prospect for multi-analytes assay of small molecules and proteins in biological samples.  相似文献   
104.
《Analytical letters》2012,45(15):2389-2402
Abstract

A qualitative capillary electrophoresis immunoassay was developed for the first-time to evaluate aptamer binding to bacterial cells. Binding affinity of aptamers developed against a Campylobacter jejuni bacterial cell target, relative to other common food-borne pathogens was investigated and specific binding affinity was evidenced by pronounced mobility shift and peak broadening with increasing bacteria concentration for both aptamers. Little to no mobility shift was observed for food-borne pathogens, Salmonella typhirium and Escherichia coli, even when increasing concentrations 10-fold over target. These results suggest that affinity probe capillary electrophoresis could be useful for qualitative screening of aptamer candidates for bacterial cell targets.  相似文献   
105.
《Analytical letters》2012,45(17):2844-2856
Enrofloxacin, a widely used fluoroquinolone antibiotic, may be a cause of bacterial drug resistance and is forbidden in poultry. Consequently, a sensitive and rapid method is required for its determination. Aptamers, which are more stable and easily synthesized than antibodies, may serve as alternatives in the development of methods for rapid detection. Six single-strand DNA aptamers binding to enrofloxacin were selected by in vitro selection. Aptamer number 17 showed the highest affinity for enrofloxacin with a dissociation constant of 188 nM and the highest guanine concentration (35%), which was predicted to be crucial for strong affinity of the aptamer to enrofloxacin, and successfully distinguished enrofloxacin from its structure analogs. Using aptamer number 17, a novel chemiluminescent enzyme immunoassay associating with biotin-streptavidin was developed that allowed the determination of enrofloxacin to 2.26 ng/mL. Due to its capability to determine enrofloxacin in bovine milk, this newly selected aptamer may find broad application in food and environmental monitoring.  相似文献   
106.
共振散射光谱技术是利用荧光分光光度计的同步扫描技术建立起来的一项光谱分析新技术,具有简便、快速、灵敏度高等优点,在蛋白质、核酸、无机离子等痕量分析中得到应用.结合本课题组近年来的研究工作,本文综述了共振散射光谱技术在免疫纳米催化、核酸适配体纳米催化分析中的应用.  相似文献   
107.
With the completion of the human genome-sequencing project, there has been a resulting change in the focus of studies from genomics to proteomics. By utilizing the inherent advantages of molecular beacon probes and biofunctionalized nanoparticles, a series of novel principles, methods and techniques have been exploited for bioanalytical and biomedical studies. This review mainly discusses the applications of molecular beacon probes and biofunctionalized nanoparticles-based technologies for realtime, in-situ...  相似文献   
108.
采用电化学沉积法在金电极表面制备了铁氰化铜(CuHCF)氧化还原电化学探针,通过CN~-(CuHCF)和金纳米粒子(GNPs)之间形成Au-CN键的强相互作用力,将GNPs组装到电极表面后,再通过Au-S键将巯基化的腺苷适配体组装到电极表面,构建了高灵敏检测腺苷的非标记型核酸适配体传感器。利用电化学阻抗对传感器的组装构建过程进行监测。用循环伏安法和差分脉冲法考察了该传感器的电化学行为,并探讨了支持电解质和扫速对传感器的影响。在最优实验条件下,该传感器对腺苷在100 fg/mL~50.0 ng/mL范围内呈良好的线性响应,相关系数为0.998,检出限为45.0 fg/mL。  相似文献   
109.
基于偶联作用和ssDNA结合蛋白与适配体的结合作用制备检测复合物MB-aptamer^SiO2@SSB@HRP,利用目标物沙丁胺醇与适配体之间的亲和性比ssDNA结合蛋白与适配体亲和性更高的原理,以沙丁胺醇为"钥匙"将适配体与ssDNA结合蛋白构成的"开关"打开,经过磁性分离,最终以辣根过氧化物酶催化四甲基联苯胺产生的显色反应作为信号输出,建立了沙丁胺醇的可视化快速检测方法。在优化实验条件下,沙丁胺醇浓度与显色反应的吸光度在0.1~10μmol/L之间呈良好线性关系(r2=0.995 9),检出限为0.1μmol/L。对中成药样品进行沙丁胺醇加标回收实验,回收率为86.0%~106%,相对标准偏差为3.9%~12%。该方法能够满足非法添加实际检测需求。  相似文献   
110.
丙型病毒性肝炎是由丙型肝炎病毒(hepatitis C virus,HCV)引起的一种传染性疾病.发展对HCV抗原具有高亲和力高特异性的识别分子和检测方法对丙肝进行早期诊断具有非常重要的意义.我们通过SELEX筛选得到了能特异性识别HCV核心蛋白(core蛋白)的DNA核酸适体,建立了可对HCV core蛋白进行高灵敏检测的核酸适体-酶联免疫新方法,并成功应用于丙肝病人血清中HCV core蛋白的检测,有望发展成为简便、灵敏、低成本的HCV早期诊断和血清筛查新方法.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号