全文获取类型
收费全文 | 130篇 |
免费 | 15篇 |
国内免费 | 10篇 |
专业分类
化学 | 139篇 |
物理学 | 16篇 |
出版年
2023年 | 7篇 |
2022年 | 8篇 |
2021年 | 6篇 |
2020年 | 3篇 |
2019年 | 2篇 |
2018年 | 3篇 |
2017年 | 8篇 |
2016年 | 8篇 |
2015年 | 7篇 |
2014年 | 6篇 |
2013年 | 4篇 |
2012年 | 14篇 |
2011年 | 14篇 |
2010年 | 12篇 |
2009年 | 10篇 |
2008年 | 8篇 |
2007年 | 7篇 |
2006年 | 7篇 |
2005年 | 2篇 |
2004年 | 4篇 |
2003年 | 2篇 |
2002年 | 4篇 |
2001年 | 2篇 |
2000年 | 4篇 |
1996年 | 1篇 |
1995年 | 1篇 |
1993年 | 1篇 |
排序方式: 共有155条查询结果,搜索用时 0 毫秒
101.
Quantitative evaluation main of the components in Paeoniae Radix Alba–Atractylodis Macrocephalae Rhizoma herbal pair by high‐performance liquid chromatography 下载免费PDF全文
The aim of this study was to investigate the influence of compatibility on the contents of main compounds in Paeoniae Radix Alba and Atractylodis Macrocephalae Rhizoma. Ten compounds were separated on an Inertsil ODS‐SP Extend C18 column (250 mm × 4.6 mm, 5 μm) and detected by a diode array detector with the mobile phase consisting of aqueous phosphoric acid (0.1%, v/v; A) and acetonitrile (B) by linear gradient elution. All analytes showed good linearity over a wide concentration range (r2 ≥ 0.9989). The limits of detection and quantification were <8.10 and 10.80 μg/mL, respectively. The intra‐ and interday variations were <4.36%. The average recoveries were observed from 94.90 to 103.38%, with relative standard deviation ranging from 1.23 to 3.15% for the analytes. The established method was reliable enough for global quality evaluation of Paeoniae Radix Alba, Atractylodis Macrocephalae Rhizoma, and their co‐decoctions. 相似文献
102.
《Biomedical chromatography : BMC》2017,31(2)
A rapid and sensitive liquid chromatography tandem mass spectrometry (LC–MS/MS) was developed and validated for simultaneous quantification of oleanolic acid and hederagenin in rat plasma. After the two analytes were extracted with liquid–liquid extraction, chromatographic separation was performed on a C18 column with acetonitrile and water (85:15, v /v) as mobile phase at a flow rate of 0.4 mL/min. Calibration curves exhibited good linearity (r > 0.995) over the ranges of 0.41–82.0 ng/mL for oleanolic acid and 0.32–64.0 ng/mL for hederagenin, respectively. The lower limit of quantifications (LLOQs) in plasma were 0.41 ng/mL for oleanolic acid and 0.32 ng/mL for hederagenin. The established LLOQs were within the concentration needed for the assay in plasma, which met the requirements to evaluate their pharmacokinetics of oleanolic acid and hederagenin. This developed assay was successfully applied in the pharmacokinetic study of oleanolic acid and hederagenin in rats after oral administration of Rhizoma Clematidis extract. 相似文献
103.
《Biomedical chromatography : BMC》2017,31(7)
Depression is a major cause of illness and disability. We applied untargeted metabolomics using mass spectrometry to identify metabolic signatures associated with depression in serum and explored the antidepressant effects of lilies and Rhizoma Anemarrhenae on an experimental model of chronic unpredictable mild stress (CUMS). Meanwhile metabolomics based on UHPLC‐Q‐TOF‐MS was used to study the change in metabolites in CUMS rat serum and to evaluate the effects of Rhizoma Anemarrhenae and lilies (alone and in combination). Partial least squares‐discriminant analysis identified 30 metabolites as decisive marker compounds that discriminated the CUMS rats and the control rats. The majority of these metabolites were involved in amino acid metabolism, the tricarboxylic acid cycle, and phosphoglyceride metabolism. The reliability of the metabolites was evaluated by the administration of lilies, Rhizoma Anemarrhenae, fluoxetine and the combination of lilies and Rhizoma Anemarrhenae to the CUMS rats. Behavior studies demonstrated that treatment with the combination of lilies and Rhizoma Anemarrhenae resulted in optimal antidepressant effects. The combination treatment was almost as effective as fluoxetine. Our results suggest that lilies and Rhizoma Anemarrhenae demonstrate synergistically antidepressant effects in CUMS via the regulation of multiple metabolic pathways. These findings provide insight into the pathophysiological mechanisms underlying CUMS and suggest innovative and effective treatments for this disorder. 相似文献
104.
为对比分析产地对丹参中酚酸类和丹参酮类成分的影响,采用超高效液相色谱(UPLC)及超高效液相色谱-三重四极杆质谱联用技术(UPLC-QQQ-MS)同时测定来自山东、河南、陕西、四川、安徽共408份丹参中23种化学成分的含量,并对数据进行多元统计分析。研究发现17种酚酸类及6种丹参酮类成分在不同产地丹参中均存在显著差异。山东的丹参样品中丹参酮类成分含量最高,四川的样品中丹酚酸B含量最高,安徽丹参的紫草酸、丹酚酸Y、丹酚酸A、丹酚酸D和丹酚酸E等的含量最高。多种模式识别方法均可用于不同产地丹参的判别分析,线性判别分析(LDA)为产地溯源的最佳模型。正交偏最小二乘法判别分析(OPLS-DA)表明不同产地丹参的化学成分差异较大,不同来源丹参的质量差异标志物不仅限于丹酚酸B、丹参酮Ⅰ、隐丹参酮、丹参酮ⅡA,其他丹酚酸类及丹参酮类也是重要的质量标志物。该研究对全国不同主产区的栽培丹参进行多指标含量测定及建模分析,所建立的定量方法专属性强、准确高效,可为不同产地丹参的质量控制及产地判别提供参考。 相似文献
105.
106.
107.
A simple, sensible, and reliable HPLC–DAD method was first developed for fingerprint analysis of Alismatis Rhizoma, and then applied to analyze 85 samples from three main cultivated areas. In all, 40 common fingerprint peaks were designated, and six of which were definitely identified. Then, the combinatory analysis using similarity evaluation, principal component analysis, and orthogonal partial least square discriminant analysis revealed clear chemical consistency between samples from Fujian and Jiangxi provinces and substantial differences between those from Fujian/Jiangxi and Sichuan provinces. Furthermore, six components were dug out as potential chemical markers for distinguishing Alismatis Rhizoma from different areas, among which five were qualified for quantitative analysis. In conclusion, the combination of chemical fingerprint, multiple components quantification, and pattern recognition analysis was rather powerful and useful in discriminating Alismatis Rhizoma from different regions, which was a benefit for quality control. 相似文献
108.
109.
A rapid, easy and reproducible capillary electrophoresis (CE) method for the simultaneous determination of allantoin, choline and arginine in Rhizoma Dioscoreae was developed first time. Under the optimum condition, the three analytes could be well separated within 5 min in a 70 cm (60 cm effective length) x 75 microm i.d. capillary. The relative standard deviations for both migration time and peak height were less than 3.20%. The linear response range was 5.0-150, 0.9-100 and 1.0-200 microg/ml for arginine, choline and allantoin, respectively. The detection limit of three components was 2.0, 0.4 and 0.5 microg/ml for arginine, choline and allantoin, respectively. Contents of arginine, choline and allantoin in the crude drug of Rhizoma Dioscoreae could be easily determined by the proposed method with satisfactory results. 相似文献
110.