首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2087篇
  免费   254篇
  国内免费   831篇
化学   2264篇
晶体学   42篇
力学   56篇
综合类   11篇
数学   6篇
物理学   793篇
  2024年   3篇
  2023年   38篇
  2022年   70篇
  2021年   101篇
  2020年   114篇
  2019年   114篇
  2018年   107篇
  2017年   114篇
  2016年   153篇
  2015年   148篇
  2014年   167篇
  2013年   232篇
  2012年   190篇
  2011年   227篇
  2010年   197篇
  2009年   186篇
  2008年   168篇
  2007年   184篇
  2006年   134篇
  2005年   138篇
  2004年   105篇
  2003年   85篇
  2002年   60篇
  2001年   37篇
  2000年   30篇
  1999年   28篇
  1998年   7篇
  1997年   11篇
  1996年   9篇
  1995年   3篇
  1994年   4篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1990年   4篇
  1984年   1篇
排序方式: 共有3172条查询结果,搜索用时 15 毫秒
71.
72.
73.
This review reports on the latest developments in the field of magnetic nanocomposites, with a special focus on the potentials introduced by the incorporation of magnetic nanoparticles into polymer and supramolecular matrices. The general notions and the state of the art of nanocomposite materials are summarized and the results reported in the literature over the last decade on magnetically responsive films, capsules and gels are reviewed. The most promising concepts that have inspired the design of magneto-responsive nanocomposites are illustrated through remarkable examples where the integration of magnetic nanoparticles into organic architectures has successfully taken to the development of responsive multifunctional materials.  相似文献   
74.
In the present report, Nickel oxide nanoparticles (NiONPs) were synthesized using Rhamnus virgata (Roxb.) (Family: Rhamnaceae) as a potential stabilizing, reducing and chelating agent. The formation, morphology, structure and other physicochemical properties of resulting NiONPs were characterized by Ultra violet spectroscopy, X‐ray diffraction (XRD), Fourier Transform Infrared analysis (FTIR), Scanning electron microscopy (SEM), Energy‐dispersive‐spectroscopy (EDS), Transmission electron microscopy (TEM), Raman spectroscopy and dynamic light scattering (DLS). Detailed in vitro biological activities revealed significant therapeutic potential for NiONPs. The antimicrobial efficacy of biogenic NiONPs was demonstrated against five different gram positive and gram negative bacterial strains. Klebsiella pneumoniae and Pseudomonas aeruginosa (MIC: 125 μg/mL) were found to be the least susceptible and Bacillus subtilis (MIC: 31.25 μg/mL) was found to be the most susceptible strain to NiONPs. Biogenic NiONPs were reported to be highly potent against HepG2 cells (IC50: 29.68 μg/ml). Moderate antileishmanial activity against Leishmania tropica (KMH23) promastigotes (IC50: 10.62 μg/ml) and amastigotes (IC50: 27.58 μg/ml) cultures are reported. The cytotoxic activity was studied using brine shrimps and their IC50 value was recorded as 43.73 μg/ml. For toxicological assessment, NiONPs were found compatible towards human RBCs (IC50: > 200 μg/ml) and macrophages (IC50: > 200 μg/ml), deeming particles safe for various applications in nanomedicines. Moderate antioxidant activities: total antioxidant capacity (TAC) (51.43%), 2,2‐diphenyl‐1‐picrylhydrazyl (DPPH) activity (70.36%) and total reducing power (TRP) (45%) are reported for NiONPs. In addition, protein kinase and alpha amylase inhibition assays were also performed. Our results concluded that Rhamnus virgata synthesized NiONPs could find important biomedical applications with low cytotoxicity to normal cells.  相似文献   
75.
This study demonstrates how the method of thermally assisted oxidative precipitation in water can be opened for—the so far neglected—metal organic iron(II) complexes (herein: citrate) in order to obtain, in one step, ferromagnetic magnetite nanoparticles, possessing essential ligand properties. Based on a dedicated analysis of the specific precursor in combination with the consideration of known properties of the ligand, it is possible to identify existing inhibition-attributes of the iron organyl such that these can be overcome. Moreover, they can be exploited in a targeted manner; thus, simply by changing concentrations, a variety of magnetite nanoparticle morphologies with distinct properties can be obtained. In the case of the herein investigated ferrous citrate, three major inhibition effects are identified. While two of them efficiently prevent the formation of magnetite and need to be addressed to be overcome, the third can be exploited to selectively synthesize, for example, relatively stable carboxyl group-bearing nuclei clusters, exhibiting the properties of magnetically responsive photonic crystals, or relatively large mesocrystals, whose intraparticular magnetic interactions are apparently disturbed.  相似文献   
76.
Abstract

Recently, extensive efforts have focused on the development of solid polymer electrolytes (SPEs) requiring high mechanical performance without sacrificing ion conductivity. To develop such a SPE, we incorporate robust silica mesoporous particles (SMP) into the epoxy-based SPEs, and increasing the SMP content raises the glass transition temperature of the SPEs. This enables to increase the mechanical properties of the SPEs, supported by the microstructural investigation showing a highly compact structure. Ionic conductivities of these SPEs follow Vogel temperature dependence, and increasing the silica nanoparticle content leads to a slight decrease in the conductivity, consistent with the dielectric response investigation.  相似文献   
77.
Abstract

A novel, fast, and easy method for synthesizing a carbon-supported Ni2P nanocomposite (C/Ni2P) is described. The process involves a reaction between a nickel salt, phosphoric acid, and a carbon source by utilizing microwave irradiation. The carbon source for the nanocomposite is from renewable supplies, namely, tannin and lignin. The method has successfully synthesized Ni2P nanoparticles dispersed in a carbon matrix with a particle size ranging from 20 to 50 nm in diameter. During the microwave process, tannin and lignin provided a reducing environment in the microwave irradiation process. The synthesized products are characterized by several characterization methods. The method showed that phosphoric acid, which is a nontoxic compound, could be used as an alternative P source for synthesizing Ni2P. The method is fast, easy, and an economical process to synthesize the carbon-coated Ni2P nanocomposite.  相似文献   
78.
Fluorescence imaging in the second near-infrared region(900-1700 nm, NIR-II) with a high resolution and penetration depth due to the significantly reduced tissue scattering and autofluorescence has emerged as a useful tool in biomedical fields. Recently, many efforts have been devoted to the development of fluorophores with an emission band covering the long-wavelength end of NIR-II region(1500-1700 nm) to eliminate the autofluorescence. Alternatively, we believe imaging with a narrow bandwidth could also reduce the autofluorescence. As a proof of concept, NaYF4:Yb,Nd@NaYF4 downconversion nanoparticles(DCNPs) with sharp NIR-II emission were synthesized. The luminescence of DCNPs showed a half-peak width of 49 nm centered at 998 nm, which was perfectly matched with a (1000±25) nm bandpass filter. With this filter, we were able to retain most of the emissions from the nanoparticles, while the autofluorescence was largely reduced. After PEGylation, the DCNPs exhibited great performance for blood vessel and tumor imaging in living mice with significantly reduced autofluorescence and interference signals. This work provided an alternative way for the low-autofluorescence imaging and emphasized the importance of narrow emitting rare-earth doped nanoparticles for NIR-II imaging.  相似文献   
79.
Rhodium nanoparticles were anchored on carbon nanotubes and the resulting nanohybrid was studied as co‐catalyst, along with tert‐butylcatechol, for the dehydrogenation of various N‐heterocycles. The co‐catalytic system operates in high yields, under the mildest conditions reported so far, and can be applied to a wide variety of secondary amine‐containing scaffolds.  相似文献   
80.
As a continuation of our efforts to develop new heterogeneous nanomagnetic catalysts for greener reactions, we identified a Schiff base–palladium(II) complex anchored on magnetic nanoparticles (SB‐Pd@MNPs) as a highly active nanomagnetic catalyst for Suzuki–Miyaura cross‐coupling reactions between phenylboronic acid and aryl halides and for the reduction of nitroarenes using sodium borohydride in an aqueous medium at room temperature. The SB‐Pd@MNPs nanomagnetic catalyst shows notable advantages such as simplicity of operation, excellent yields, short reaction times, heterogeneous nature, easy magnetic work up and recyclability. Characterization of the synthesized SB‐Pd@MNPs nanomagnetic catalyst was performed with various physicochemical methods such as attenuated total reflectance infrared spectroscopy, UV–visible spectroscopy, inductively coupled plasma atomic emission spectroscopy, energy‐dispersive X‐ray spectroscopy, field‐emission scanning electron microscopy, transmission electron microscopy, powder X‐ray powder diffraction, thermogravimetric analysis and Brunauer–Emmett–Teller surface area analysis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号