首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3996篇
  免费   377篇
  国内免费   398篇
化学   3993篇
晶体学   198篇
力学   57篇
综合类   6篇
数学   9篇
物理学   508篇
  2024年   17篇
  2023年   191篇
  2022年   132篇
  2021年   160篇
  2020年   233篇
  2019年   174篇
  2018年   138篇
  2017年   155篇
  2016年   212篇
  2015年   221篇
  2014年   224篇
  2013年   292篇
  2012年   180篇
  2011年   166篇
  2010年   144篇
  2009年   215篇
  2008年   213篇
  2007年   229篇
  2006年   193篇
  2005年   183篇
  2004年   168篇
  2003年   148篇
  2002年   101篇
  2001年   68篇
  2000年   83篇
  1999年   71篇
  1998年   63篇
  1997年   59篇
  1996年   51篇
  1995年   51篇
  1994年   48篇
  1993年   24篇
  1992年   21篇
  1991年   20篇
  1990年   15篇
  1989年   17篇
  1988年   15篇
  1987年   10篇
  1986年   15篇
  1985年   6篇
  1984年   7篇
  1983年   2篇
  1982年   4篇
  1981年   5篇
  1980年   5篇
  1979年   3篇
  1978年   3篇
  1976年   5篇
  1974年   2篇
  1973年   7篇
排序方式: 共有4771条查询结果,搜索用时 15 毫秒
31.
Single crystals of (1,3‐diamino‐5‐azaniumyl‐1,3,5‐trideoxy‐cis‐inositol‐κ3O2,O4,O6)(1,3,5‐triamino‐1,3,5‐trideoxy‐cis‐inositol‐κ3O2,O4,O6)lithium(I) diiodide dihydrate, [Li(C6H16N3O3)(C6H15N3O3)]I2·2H2O or [Li(Htaci)(taci)]I2·2H2O (taci is 1,3,5‐triamino‐1,3,5‐trideoxy‐cis‐inositol), (I), bis(1,3,5‐triamino‐1,3,5‐trideoxy‐cis‐inositol‐κ3O2,O4,O6)sodium(I) iodide, [Na(C6H15N3O3)2]I or [Na(taci)2]I, (II), and bis(1,3,5‐triamino‐1,3,5‐trideoxy‐cis‐inositol‐κ3O2,O4,O6)potassium(I) iodide, [K(C6H15N3O3)2]I or [K(taci)2]I, (III), were grown by diffusion of MeOH into aqueous solutions of the complexes. The structures of the Na and K complexes are isotypic. In all three complexes, the taci ligands adopt a chair conformation with axial hydroxy groups, and the metal cations exhibit exclusive O‐atom coordination. The six O atoms of the resulting MO6 unit define a centrosymmetric trigonal antiprism with approximate D3d symmetry. The interligand O...O distances increase significantly in the order Li < Na < K. The structure of (I) exhibits a complex three‐dimensional network of R—NH2—H...NH2R, R—O—H...NH2R and R—O—H...O(H)—H...NH2R hydrogen bonds. The structures of the Na and K complexes consist of a stack of layers, in which each taci ligand is bonded to three neighbours via pairwise O—H...NH2 interactions between vicinal HO—CH—CH—NH2 groups.  相似文献   
32.
Two structural isomers containing five second-row element atoms with 24 valence electrons were generated and identified by matrix-isolation IR spectroscopy and quantum chemical calculations. The OCBNO complex, which is produced by the reaction of boron atoms with mixtures of carbon monoxide and nitric oxide in solid neon, rearranges to the more stable OBNCO isomer on UV excitation. Bonding analysis indicates that the OCBNO complex is best described by the bonding interactions between a triplet-state boron cation with an electron configuration of (2s)0(2pσ)0(2pπ)2 and the CO/NO ligands in the triplet state forming two degenerate electron-sharing π bonds and two ligand-to-boron dative σ bonds.  相似文献   
33.
Using first-principles plane-wave calculations within density functional theory, we theoretically studied the atomic structure, bonding energy and electronic properties of the perfect Mo (110)/MoSe2 (100) interface with a lattice mismatch less than 4.2%. Compared with the perfect structure, the interface is somewhat relaxed, and its atomic positions and bond lengths change slightly. The calculated interface bonding energy is about −1.2 J/m2, indicating that this interface is very stable. The MoSe2 layer on the interface has some interface states near the Fermi level, the interface states are mainly caused by Mo 4d orbitals, while the Se atom almost have no contribution. On the interface, Mo-5s and Se-4p orbitals hybridize at about −6.5 to −5.0 eV, and Mo-4d and Se-4p orbitals hybridize at about −5.0 to −1.0 eV. These hybridizations greatly improve the bonding ability of Mo and Se atom in the interface. By Bader charge analysis, we find electron redistribution near the interface which promotes the bonding of the Mo and MoSe2 layer.  相似文献   
34.
35.
A novel phenylacetylene derivative containing urea groups was synthesized and polymerized with a Rh catalyst to give the corresponding polymer, poly(1) with moderate number-average molecular weights. The poly(1) was soluble in toluene, CHCI3, CH2C12, THF, DMF, and DMSO, but insoluble in hexane, diethyl ether and MeOH. The specific rotation and circular dichroism (CD) spectroscopic studies revealed that poly(1) took predominantly one-handed helical structures. The presence of intramolecular hydrogen bonding was confirmed by liquid-state IR spectroscopy. The helicity of poly(1) could be tuned by temperature and anion. The helical conformation of the polymer was stable against Br but susceptible to F.  相似文献   
36.
Hydrogen bonds (HB) are arguably the most important noncovalent interactions in chemistry. We study herein how differences in connectivity alter the strength of HBs within water clusters of different sizes. We used for this purpose the interacting quantum atoms energy partition, which allows for the quantification of HB formation energies within a molecular cluster. We could expand our previously reported hierarchy of HB strength in these systems (Phys. Chem. Chem. Phys., 2016, 18 , 19557) to include tetracoordinated monomers. Surprisingly, the HBs between tetracoordinated water molecules are not the strongest HBs despite the widespread occurrence of these motifs (e.g., in ice Ih). The strongest HBs within H2O clusters involve tricoordinated monomers. Nonetheless, HB tetracoordination is preferred in large water clusters because (a) it reduces HB anticooperativity associated with double HB donors and acceptors and (b) it results in a larger number of favorable interactions in the system. Finally, we also discuss (a) the importance of exchange-correlation to discriminate among the different examined types of HBs within H2O clusters, (b) the use of the above-mentioned scale to quickly assess the relative stability of different isomers of a given water cluster, and (c) how the findings of this research can be exploited to indagate about the formation of polymorphs in crystallography. Overall, we expect that this investigation will provide valuable insights into the subtle interplay of tri- and tetracoordination in HB donors and acceptors as well as the ensuing interaction energies within H2O clusters.  相似文献   
37.
We have explored the structural and energetic properties of a series of RMX3-NH3 (M=Si, Ge; X=F, Cl; R=CH3, C6H5) complexes using density functional theory and low-temperature infrared spectroscopy. In the minimum-energy structures, the NH3 binds axially to the metal, opposite a halogen, while the organic group resides in an equatorial site. Remarkably, the primary mode of interaction in several of these systems seems to be hydrogen bonding (C-H--N) rather than a tetrel (N→M) interaction. This is particularly clear for the RMCl3-NH3 complexes, and analyses of the charge distributions of the acid fragment corroborate this assessment. We also identified a set of metastable geometries in which the ammonia binds opposite the organic substituent in an axial orientation. Acid fragment charge analyses also provide a clear rationale as to why these configurations are less stable than the minimum-energy structures. Matrix-isolation infrared spectra provide clear evidence for the occurrence of the minimum-energy form of CH3SiCl3–NH3, but analogous results for CH3GeCl3–NH3 are less conclusive. Computational scans of the M-N distance potentials for CH3SiCl3–NH3 and CH3GeCl3–NH3, both in the gas phase and bulk dielectric media, reveal a great deal of anharmonicity and a propensity for condensed-phase structural change.  相似文献   
38.
Dielectric relaxation spectroscopy in the frequency range from 10−2 Hz to 106 Hz and electron spin resonance (ESR) experiments are employed to study the dynamics in chemically and physically crosslinked networks. As examples for physically crosslinked networks ortho- and para-cresol novolacs were investigated. Dielectrically these materials show low-temperature β- and high-temperature α-relaxation. Both relaxation regions differ for both types of novolacs. This is also reflected by the ESR measurements and is discussed in terms of different hydrogen bonds found to be stronger in para-cresol novolac. For the chemically crosslinked poly(triallyl isocyanurate) only a β-peak is found by the dielectric measurements. Also in the ESR experiment the slow motion regime is characterized up to high temperatures. This means that the segmental motion is strongly suppressed by chemical crosslinking. Nevertheless the obtained change in the formal T50G value can be used to characterize the glass transition in highly crosslinked systems by the ESR method.  相似文献   
39.
Two novel organic-inorganic hybrid compounds based on organoamines and polyoxovanadates formulated as (H2dien)4[H10V18O42(PO4)](PO4)·2H2O (1) (dien=diethylenetriamine) and (Him)8[HV18O42(PO4)] (2) (im=imidazole) have been prepared under hydrothermal conditions by using different starting materials, and characterized by elemental analyses, IR, ESR, XPS, TGA and single-crystal X-ray diffraction analyses. Crystal data for compound 1: C16H74N12O52V18P2, Monoclinic, space group C2/c, a=23.9593(4) Å, b=13.0098(2) Å, c=20.1703(4) Å, β=105.566(3)°, V=6056.6(19) Å3, Z=4; for compound 2, C24H41N16O46V18P, Tetragonal, space group I4/mmm, a=13.5154(8) Å, b=13.5154(8) Å, c=19.1136 Å, β=90°, V=3491.4(3) Å3, Z=2. Compound 1 consists of protonated diens together with polyoxovanadates [H10V18O42(PO4)]5−. Compound 2 is composed of protonated ims and polyoxovanadates [HV18O42(PO4)]8−. There are hydrogen-bonding interactions between polyoxovanadates and different organoamines in 1 and 2. Polyoxovanadates are linked through H2dien into a three-dimensional network via hydrogen bonds in 1, while polyoxovanadates are linked by Him into a two-dimensional layer network via hydrogen bonds in 2. The crystal packing patterns of the two compounds reveal various supramolecular frameworks.  相似文献   
40.
The phosphorus bond in chemical systems, which is an inter- or intramolecular noncovalent interaction, occurs when there is evidence of a net attractive interaction between an electrophilic region associated with a covalently or coordinately bonded phosphorus atom in a molecular entity and a nucleophile in another, or the same, molecular entity. It is the second member of the family of pnictogen bonds, formed by the second member of the pnictogen family of the periodic table. In this overview, we provide the reader with a snapshot of the nature, and possible occurrences, of phosphorus-centered pnictogen bonding in illustrative chemical crystal systems drawn from the ICSD (Inorganic Crystal Structure Database) and CSD (Cambridge Structural Database) databases, some of which date back to the latter part of the last century. The illustrative systems discussed are expected to assist as a guide to researchers in rationalizing phosphorus-centered pnictogen bonding in the rational design of molecular complexes, crystals, and materials and their subsequent characterization.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号