首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1720篇
  免费   141篇
  国内免费   172篇
化学   1341篇
晶体学   17篇
力学   53篇
综合类   4篇
数学   66篇
物理学   552篇
  2024年   4篇
  2023年   27篇
  2022年   27篇
  2021年   42篇
  2020年   67篇
  2019年   33篇
  2018年   44篇
  2017年   57篇
  2016年   84篇
  2015年   64篇
  2014年   76篇
  2013年   183篇
  2012年   76篇
  2011年   102篇
  2010年   85篇
  2009年   107篇
  2008年   111篇
  2007年   86篇
  2006年   101篇
  2005年   82篇
  2004年   105篇
  2003年   70篇
  2002年   58篇
  2001年   46篇
  2000年   32篇
  1999年   33篇
  1998年   36篇
  1997年   39篇
  1996年   24篇
  1995年   16篇
  1994年   25篇
  1993年   17篇
  1992年   19篇
  1991年   8篇
  1990年   6篇
  1989年   10篇
  1988年   10篇
  1987年   11篇
  1986年   2篇
  1985年   2篇
  1982年   2篇
  1981年   3篇
  1972年   1篇
排序方式: 共有2033条查询结果,搜索用时 46 毫秒
81.
Abstract

To improve the compatibility of styrene-maleic anhydride copolymer/low density polyethylene (SMA/LDPE) blends, LDPE grafted with 2-hydroxyethyl methacrylate-isophorone diisocyanate (LDPE-g-HI) was prepared and blended with SMA of which anhydride was converted to carboxylic acid (SMAAc). The infrared spectra of LDPE-g-HI established the presence of isocyanate group. In the blend morphology, some adhesions between the two phases and much finer dispersions were observed in the SMAAc/LDPE-g-HI blends, indicating that chemical reactions took place during the melt blending. The lower heat capacity change at the glass transition temperature demonstrated that chemical bonds were produced in the SMAAc/LDPE-g-HI blends. From the results of the rheological test, it was found that strong positive deviation from the mixing rule occurred in viscosity for the SMAAc/LDPE-g-HI blends, concerning with good adhesion and finer dispersions. In the measurement of tensile property, the improved mechanical properties for the SMAAc/LDPE-g-HI blends were shown.  相似文献   
82.
83.
The transverse and longitudinal mechanical properties of aramid fibers like Kevlar? 29 (K29) fibers are strongly linked to their highly oriented structure. Mechanical characterization at the single fiber scale is challenging especially when the diameter is as small as 15 µm. Longitudinal tensile tests on single K29 fibers and single fiber transverse compression test (SFTCT) have been developed. Our approach consists of coupling morphological observations and mechanical experiments with SFTCT analysis by comparing analytical solutions and finite element modeling. New insights on the analysis of the transverse direction response are highlighted. Systematic loading/unloading compression tests enable to experimentally determine a transverse elastic limit. Taking account of the strong anisotropy of the fiber, the transverse mechanical response sheds light on a skin/core architecture. More importantly, results suggest that the skin of the fiber, typically representing a shell of one micrometer in thickness, has a transverse apparent modulus of 0.2 GPa. That is around more than fifteen times lower than the transverse modulus of 3.0 GPa in the core. By comparison, the measured longitudinal modulus is about 84 GPa. The stress distribution in the fiber is explored and the critical areas for damage initiation are discussed. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 374–384  相似文献   
84.
Uv Dye Lasers     
The moat important property of visible dye lasere, that is continuous wave length tuning, stimulated the search for dyes capable to lase UV. And they were founed in 16681. Now the need In tunable UV laeers for applications in spectroacopy, photochemistry, isotope separation, remote air and sea probing, etc. ie only more clearly Been. The object of thie paper is to review shortly some recent advances In UV dye lasers.  相似文献   
85.
By combining microfiber spinning techniques with aqueous two phase system (ATPS), a rapid and simple strategy to fabricate water-in-water (w/w) droplets encapsulated in microfibers was proposed for the first time. Hydrophilic environment in hydrogel and the fiber format facilitates higher biocompatibility, convenient manipulation of the droplets and recycling of the contents inside droplets, which would have promising development in biological, pharmacological and environmental fields.  相似文献   
86.
This pilot study elaborates the development of novel epoxy/electrospun polylactic acid (PLA) nanofiber composites at the fiber contents of 3, 5, and 10 wt % to evaluate their mechanical and thermal properties using flexural tests and differential scanning calorimetry (DSC). The flexural moduli of composites increase remarkably by 50.8 and 24.0% for 5 and 10 wt % fiber contents, respectively, relative to that of neat epoxy. Furthermore, a similar trend is also shown for corresponding flexural strengths being enhanced by 31.6 and 4.8%. Fractured surface morphology with scanning electron microscopy (SEM) confirms a full permeation of cured epoxy matrix into nanofiber structures and existence of nondestructive fibrous networks inside large void cavities. The glass transition temperature (Tg) of composites increases up to 54–60 °C due to embedded electrospun nanofibers compared to 50 °C for that of epoxy, indicating that fibrous networks may further restrict the intermolecular mobility of matrix in thermal effects. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014 , 52, 618–623  相似文献   
87.
We report the structure and thermal properties of blends comprising poly(vinylidene fluoride) (PVDF) and a random fluorinated copolymer (FCP) of poly(methyl methacrylate)‐random‐1H,1H,2H,2H‐perfluorodecyl methacrylate, promising membrane materials for oil–water separation. The roles of processing method and copolymer content on structure and properties were studied for fibrous membranes and films with varying compositions. Bead‐free, nonwoven fibrous membranes were obtained by electrospinning. Fiber diameters ranged from 0.4 to 1.9 μm, and thinner fibers were obtained for PVDF content >80%. As copolymer content increased, degree of crystallinity and onset of degradation for each blend decreased. Processing conditions have a greater impact on the crystallographic phase of PVDF than copolymer content. Fibers have polar beta phase; solution‐cast films contain gamma and beta phase; and melt crystallized films form alpha phase. Kwei's model was used to model the glass transition temperatures of the blends. Addition of FCP increases hydrophobicity of the electrospun membranes. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 312–322  相似文献   
88.
Macroencapsulation of islets of Langerhans is a promising strategy for transplantation of insulin‐producing cells in the absence of immunosuppression to treat type 1 diabetes. Hollow fiber membranes are of interest there because they offer a large surface‐to‐volume ratio and can potentially be retrieved or refilled. However, current available fibers have limitations in exchange of nutrients, oxygen, and delivery of insulin potentially impacting graft survival. Here, multibore hollow fibers for islets encapsulation are designed and tested. They consist of seven bores and are prepared using nondegradable polymers with high mechanical stability and low cell adhesion properties. Human islets encapsulated there have a glucose induced insulin response (GIIS) similar to nonencapsulated islets. During 7 d of cell culture in vitro, the GIIS increases with graded doses of islets demonstrating the suitability of the microenvironment for islet survival. Moreover, first implantation studies in mice demonstrate device material biocompatibility with minimal tissue responses. Besides, formation of new blood vessels close to the implanted device is observed, an important requirement for maintaining islet viability and fast exchange of glucose and insulin. The results indicate that the developed fibers have high islet bearing capacity and can potentially be applied for a clinically applicable bioartificial pancreas.  相似文献   
89.
One of the commonly used methods to synthesize furans is the three-component reaction among aromatic aldehyde, arylamine, and acetylenedicarboxylate. The main advantages of this work are easy reaction work-up, short reaction time, high yield and easy recyclability, reusability of the catalyst. And also basalt fiber applications are surely innovative in many industrial and economic fields, because of its good mechanical, chemical and thermal performances.  相似文献   
90.
The production of ligno-cellulosic biomass-based composites requires the development of new methodologies to evaluate the reinforcement potential of a given biomass, such as miscanthus studied in the work. Miscanthus stems from thirteen genotypes were broken into elongated fragments and mixed with polypropylene composites in an internal mixer. The aim is to find the best protocol able to discriminate miscanthus genotypes for their reinforcement capability. The following process parameters were optimized in order to maximize the reinforcement effect of the stem fragment filler: mixing parameters (mixing time, rotor speed and chamber temperature), temperature, fragment content, size and length distributions and coupling agent. The relationship between the process parameters and the mechanical properties of composites were analyzed to evaluate the influence of genotype on reinforcement performance, showing the robustness of the protocol in effectively discriminating genotypes according to their reinforcing capacity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号