首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12150篇
  免费   1001篇
  国内免费   499篇
化学   12888篇
晶体学   45篇
力学   126篇
综合类   8篇
数学   21篇
物理学   562篇
  2024年   34篇
  2023年   101篇
  2022年   173篇
  2021年   200篇
  2020年   409篇
  2019年   347篇
  2018年   304篇
  2017年   488篇
  2016年   690篇
  2015年   576篇
  2014年   613篇
  2013年   1006篇
  2012年   779篇
  2011年   748篇
  2010年   707篇
  2009年   781篇
  2008年   768篇
  2007年   776篇
  2006年   650篇
  2005年   594篇
  2004年   635篇
  2003年   451篇
  2002年   335篇
  2001年   196篇
  2000年   121篇
  1999年   144篇
  1998年   126篇
  1997年   133篇
  1996年   118篇
  1995年   103篇
  1994年   106篇
  1993年   106篇
  1992年   111篇
  1991年   47篇
  1990年   27篇
  1989年   25篇
  1988年   23篇
  1987年   16篇
  1986年   17篇
  1985年   10篇
  1984年   12篇
  1983年   5篇
  1982年   13篇
  1981年   9篇
  1980年   2篇
  1979年   5篇
  1977年   2篇
  1975年   2篇
  1974年   2篇
  1973年   2篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
101.
Azobenzene‐modified polyesters and poly(ester amide)s fitted with chiral, atropisomeric binaphthylene segments were prepared by a series of low‐temperature polycondensation reactions carried out in polar solvent media. When compared with their polyaramide counterparts studied earlier, these materials had significantly improved solubility behaviors and were readily dissolved by a wide range of organic solvents. In solution, each of these constructs underwent photoinduced oscillations in optical rotatory power when subjected to multiple UV‐light/visible‐light illumination cycles that drove trans?cis isomerization reactions along their polymer chains. Light‐regulated chiroptical perturbations were dependent on polymer backbone structures and were further modulated by well‐coordinated temperature fluctuations and by the nature of the solvent medium employed. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 207–218, 2006  相似文献   
102.
Free‐radical copolymerizations of N‐vinylcaprolactam (VCL) and glycidyl methacrylate (GMA) were investigated to synthesize temperature‐responsive reactive copolymers with minimized compositional heterogeneity. The average copolymer composition was determined by Fourier transform infrared and nuclear magnetic resonance techniques. The reactivity ratios for VCL and GMA were found to be 0.0365 ± 0.0009 and 6.44 ± 0.36 by the Fineman–Ross method and 0.039 ± 0.006 and 6.75 ± 0.29 by the Kelen–Tudos method, respectively. When prepared by batch polymerization, VCL–GMA copolymers had a highly heterogeneous composition and fractions of different solubilities in water. The use of a gradual feeding technique, which included the sequential addition of more reactive GMA monomer into the reaction, yielded copolymers with much more homogeneous composition. The produced copolymers with 0.9 and 0.11 fractional GMA contents preserved their temperature‐responsive properties and precipitated from aqueous solutions when the temperature exceeded 31 °C. The GMA units in the VCL–GMA copolymers were capable of reacting with amino end‐functionalized poly(ethylene oxide) at room temperature to produce poly(N‐vinylcaprolactam)–poly(ethylene oxide) graft copolymers. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 183–191, 2006  相似文献   
103.
The postmodification of poly[9‐(2‐hexyldecyl)‐9H‐carbazole‐2,7‐diyl] ( P1 ) upon its reaction with N‐bromosuccinimide affords exclusive and full bromination of the 3,6‐positions of the carbazole repeat units to yield poly[3,6‐dibromo‐9‐(2‐hexyldecyl)‐9H‐carbazole‐2,7‐diyl] ( P2 ). Brominated polymer P2 can be used as a precursor for further functionalization at the 3,6‐positions with the desired functional group to afford other useful polymers. Polymer P2 has hence been reacted with copper(I) cyanide to afford poly[3,6‐dicyano‐9‐(2‐hexyldecyl)‐9H‐carbazole‐2,7‐diyl] ( P3 ). Full substitution of the bromide groups with nitrile‐functional groups has been achieved. The preparation and structural characterization of polymers P2 and P3 are presented together with studies on their electronic conjugation and photoluminescence properties. Cyclic voltammetry studies on polymer P3 indicate that the new polymer is easier to reduce (n‐dope) but more difficult to oxidize than its unsubstituted counterpart ( P1 ) as a result of the introduction of the electron‐withdrawing nitrile‐functional groups at the 3,6‐positions on the carbazole repeat units on the polymer chains. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3336–3342, 2006  相似文献   
104.
Poly(ortho‐phenylene ethynylene)s (PoPEs) have been synthesized via an in situ activation/coupling AB′ polycondensation protocol. The resulting polymers have been characterized by several analytical methods and are shown to have no structural defects. Although the Sonogashira–Hagihara polycondensation reaction is less efficient than for the preparation of the corresponding meta‐ and para‐linked polymers, presumably because of steric hindrance caused by the ortho substituents, the process can be accelerated by the use of microwave irradiation. Optical spectroscopy indicates solvent‐dependent conformational changes between extended transoid and helical cisoid conformations, providing the first experimental evidence for solvophobically driven folding of the PoPE backbone. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 1619–1627, 2006  相似文献   
105.
Uracil‐derivatized monomer 6‐undecyl‐1‐(4‐vinylbenzyl)uracil and diaminopyrimidine‐derivatized monomer 2,6‐dioctanoylamido‐4‐methacryloyloxypyrimidine (DMP) were synthesized and polymerized by atom transfer radical polymerization (ATRP). A well‐defined, highly soluble, uracil‐containing polymer, poly[6‐undecyl‐1‐(4‐vinylbenzyl)uracil] (PUVU), was prepared in dioxane at 90 °C with CuBr/1,1,4,7,10,10‐hexamethyltriethylenetetramine as the catalyst and methyl α‐bromophenylacetate as the initiator. PUVU was further used as a template for the ATRP of DMP. The enhanced apparent rate constant of the DMP polymerization in the presence of PUVU indicated that the ATRP of DMP occurred along the PUVU template. The template polymerization produced a stable and insoluble macromolecular complex, PUVU/poly(2,6‐dioctanoylamido‐4‐methacryloyloxypyrimidine). An X‐ray diffraction study confirmed that the complex had strandlike domains. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 6607–6615, 2006  相似文献   
106.
We fabricated a micrometer‐long supramolecular chain in which π‐conjugated polyrotaxane was coupled. A new experimental setup was designed and constructed, and the simultaneous direct imaging of the structure and fluorescent function was achieved. Furthermore, we identified the formation of a polymer intertwined network and observed novel fluorescence due to a long‐range interaction via this intertwined network over a distance of 5 μm or more without quenching over 15 min in the near field. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 801–809, 2006  相似文献   
107.
A novel microphase‐inversion method was proposed for the preparation of TiO2–SiO2/poly(methyl methacrylate) core–shell nanocomposite particles. The inorganic–polymer nanocomposites were first synthesized via a free‐radical copolymerization in a tetrahydrofuran solution, and the poor solvent was added slowly to induce the microphase separation of the nanocomposite and result in the formation of nanoparticles. The average particle sizes of the microspheres ranged from 70 to 1000 nm, depending on the reaction conditions. Transmission electron microscopy and scanning electron microscopy indicated a core–shell morphology for the obtained microspheres. Thermogravimetric analysis and X‐ray photoelectron spectroscopy measurements confirmed that the surface of the nanocomposite microspheres was polymer‐rich, and this was consistent with the core–shell morphology. The influence of the synthetic conditions, such as the inorganic composition and the content of the crosslinking monomer, on the particle properties was studied in detail. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3911–3920, 2006  相似文献   
108.
Poly(9,9‐dihexylfluorene‐2,7‐vinylene‐alt‐dibenzothiophene‐2,8‐vinylene) (PS) and poly(9,9‐dihexylfluorene‐2,7‐vinylene‐alt‐dibenzothiophene‐5,5‐dioxide‐2,8‐ vinylene) (PSO) as well as corresponding model compounds were synthesized by Heck coupling. Both the polymers and model compounds were readily soluble in common organic solvents such as tetrahydrofuran, dichloromethane, chloroform, and toluene. The polymers showed a decomposition temperature at ~430 °C and a char yield of about 65% at 800 °C in N2. The glass‐transition temperatures of the polymers were almost identical (75–77 °C) and higher than those of the model compounds (26–45 °C). All samples absorbed around 390 nm, and their optical band gaps were 2.69–2.85 eV. They behaved as blue‐greenish light emitting materials in both solutions and thin films, with photoluminescence emission maxima at 450–483 nm and photoluminescence quantum yields of 0.52–0.72 in solution. Organic light‐emitting diodes with an indium tin oxide/poly(ethylene dioxythiophene):poly(styrene sulfonic acid)/polymer/Mg:Ag/Ag configuration with polymers PS and PSO as emitting layers showed green electroluminescence with maxima at 530 and 540 nm, respectively. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 6790–6800, 2006  相似文献   
109.
Two series of poly(2,3‐diphenyl‐1,4‐phenylenevinylene) (DP‐PPV) derivatives containing multiple bulky substituents were synthesized. In the first series, two different groups were incorporated on C‐5,6 positions of the phenylene moiety to increase steric hindrance and to obtain blue‐shifted emissions. In the second series, bulky fluorenyl groups with two hexyl chains on the C‐9 position were introduced on two phenyl pendants to increase the solubility as well as steric hindrance to prevent close packing of the main chain. Polymers with high molecular weights and fine‐tuned electro‐optical properties were obtained by controlling the feed ratio of different monomers during polymerization. The maximum photoluminescent emissions of the thin films are located between 384 and 541 nm. Cyclic voltammetric analysis reveals that the band gaps of these light‐emitting materials are in the range from 2.4 to 3.3 eV. A double‐layer EL device with the configuration of ITO/PEDOT/P4/Ca/Al emitted pure green light with CIE′1931 at (0.24, 0.5). Using copolymer P6 as the emissive layer, the maximum luminescence and current efficiency were both improved when compared with the homopolymer P4. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 6738–6749, 2006  相似文献   
110.
The synthesis of two vinyl‐terminated side‐chain liquid‐crystalline polyethers containing benzylideneaniline moieties as mesogenic cores was approached in two different ways: by chemically modifying poly(epichlorohydrin) with suitable mesogenic acids or by polymerizing analogous glycidyl ester or glycidyl ether derivatives. In all the conditions tested, the first approach led to materials in which the imine group was hydrolyzed. The second approach led to the desired polymers PG2a and PG2b , but only from the glycidyl ether derivatives and when the initiator was the system that combined polyiminophosphazene base t‐Bu‐P4 and 3,5‐di‐t‐butylphenol. These polymers were chemically characterized by IR and 1H and 13C NMR spectroscopies. The estimated degrees of polymerization ranged from 30 to 36. The liquid crystalline behavior of the synthesized polymers was studied by differential scanning calorimetry, polarized optical microscopy (POM) and X‐ray diffraction. Both polymers behave like liquid crystals and exhibited a single mesophase, which was recognized as a smectic C mesophase, probably with a bilayer arrangement, i.e., a smectic C2 mesophase. The crosslinking of both polymers was performed with dicumyl peroxide as initiator, which led to liquid crystalline thermosets. POM and X‐ray diffraction confirmed that the mesophase organization mantained on the crosslinked materials. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 1877–1889, 2006  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号